Misha walked through the snowy forest and he was so fascinated by the trees to decide to draw his own tree!

Misha would like to construct a rooted tree with n

vertices, indexed from 1 to n, where the root has index 1. Every other vertex has a parent pi, and i is called a child of vertex pi. Vertex u belongs to the subtree of vertex v iff v is reachable from u while iterating over the parents (u, pu, ppu, ...). Clearly, v belongs to its own subtree, and the number of vertices in the subtree is called the size of the subtree. Misha is only interested in trees where every vertex belongs to the subtree of vertex 1

.

Below there is a tree with 6

vertices. The subtree of vertex 2 contains vertices 2, 3, 4, 5. Hence the size of its subtree is 4

.

The branching coefficient of the tree is defined as the maximum number of children in any vertex. For example, for the tree above the branching coefficient equals 2

. Your task is to construct a tree with n vertices such that the sum of the subtree sizes for all vertices equals s

, and the branching coefficient is minimum possible.

Input

The only input line contains two integers n

and s — the number of vertices in the tree and the desired sum of the subtree sizes (2≤n≤105; 1≤s≤1010

).

Output

If the required tree does not exist, output «No». Otherwise output «Yes» on the first line, and in the next one output integers p2

, p3, ..., pn, where pi denotes the parent of vertex i

.

Examples

Input
3 5
Output
Yes
1 1
Input
4 42
Output
No
Input
6 15
Output
Yes
1 2 3 1 5

Note

Below one can find one of the possible solutions for the first sample case. The sum of subtree sizes equals 3+1+1=5

, and the branching coefficient equals 2

.

Below one can find one of the possible solutions for the third sample case. The sum of subtree sizes equals 6+3+2+1+2+1=15

, and the branching coefficient equals 2

.

题意:给定N,S,让你构造一个大小为N的数,使得每个节点子树大小之和为S,如果存在,请构造一个树,使得儿子最多的点的儿子数量(P)最少。

思路:我们发现对于大小一定的树,越瘦长K越大(一条链,最大为N*(N+1)/2),越矮胖越小(菊花树,最小为N+N-1),那么如果K不在这个范围我们输出-1;如果在,我们一定看i有构造一个满足题意的树。 我们可以二分得到P。然后来构造。 我的构造方式是先构造一条链,此时的sum=N*(N+1)/2;如果sum>S,我们就把最下面的点移到上面的某个位置,知道sum=S。

#include<bits/stdc++.h>
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;ll N,S;
ll fa[maxn],q[maxn],d[maxn],head,tail,sz[maxn],son[maxn];
bool check(ll Mid)
{
ll tN=N,now=,p=,res=;
while(tN){
res+=min(p,tN)*now;
if(res>S) return false;
tN-=min(p,tN);
p*=Mid; now++;
} return true;
}
int main()
{
cin>>N>>S;
ll Mn=N+N-; ll Mx=N*(N+)/;
if(S<Mn||S>Mx) return puts("NO"),;
ll L=,R=N-,Mid,res;
while(L<=R){
Mid=(L+R)/;
if(check(Mid)) res=Mid,R=Mid-;
else L=Mid+;
}
puts("YES");
rep(i,,N) sz[i]=; ll Now=Mx,D=;
for(int i=N;;i--){
if(Now==S) break;
if(sz[D]==sz[D-]*res) D++;
if(Now-S>=i-D){
sz[D]++; sz[i]--;
Now-=(i-D);
}
else {
sz[i]--; sz[i-(Now-S)]++;
Now=S;
}
}
head=tail=; q[head]=; d[]=;
ll p=;
rep(i,,N) {
if(sz[i]==) break;
L=p+; R=p+sz[i];
rep(j,L,R){
while(d[q[head]]!=i-||son[q[head]]==res){
head++;
}
fa[j]=q[head]; son[q[head]]++;
q[++tail]=j; d[j]=i;
}
p=R;
}
rep(i,,N) printf("%lld ",fa[i]);
return ;
}

CodeForces - 1098.DIV1.C: Construct a tree(贪心,构造)的更多相关文章

  1. CodeForces - 748D Santa Claus and a Palindrome (贪心+构造)

    题意:给定k个长度为n的字符串,每个字符串有一个魅力值ai,在k个字符串中选取字符串组成回文串,使得组成的回文串魅力值最大. 分析: 1.若某字符串不是回文串a,但有与之对称的串b,将串a和串b所有的 ...

  2. Leetcode, construct binary tree from inorder and post order traversal

    Sept. 13, 2015 Spent more than a few hours to work on the leetcode problem, and my favorite blogs ab ...

  3. [LeetCode] Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍历建立二叉树

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  4. 【LeetCode OJ】Construct Binary Tree from Preorder and Inorder Traversal

    Problem Link: https://oj.leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-trave ...

  5. Construct Binary Tree from Inorder and Postorder Traversal

    Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder traversal of ...

  6. Construct Binary Tree from Preorder and Inorder Traversal

    Construct Binary Tree from Preorder and Inorder Traversal Given preorder and inorder traversal of a ...

  7. Construct a tree from Inorder and Level order traversals

    Given inorder and level-order traversals of a Binary Tree, construct the Binary Tree. Following is a ...

  8. 【LeetCode OJ】Construct Binary Tree from Inorder and Postorder Traversal

    Problem Link: https://oj.leetcode.com/problems/construct-binary-tree-from-inorder-and-postorder-trav ...

  9. 36. Construct Binary Tree from Inorder and Postorder Traversal && Construct Binary Tree from Preorder and Inorder Traversal

    Construct Binary Tree from Inorder and Postorder Traversal OJ: https://oj.leetcode.com/problems/cons ...

随机推荐

  1. 【转】QT获取系统时间,以及设置日期格式

    http://blog.csdn.net/zzk197/article/details/7498593 例如我要在一个label上设置当前时间 QDateTime time = QDateTime:: ...

  2. Android 上传大文件

    最近工作需要实现使用 Android 手机上传图片的功能, 参考了网络上的很多资料, 不过网络上的代码都仅仅适合上传较小的文件, 当上传较大文件时(我在自己的测试机器上发现是 2M 左右), 就会因为 ...

  3. Windows 2012 R2 创建AD域

    创建复数的域控制器,容错的同时(一台AD故障),且能提高用户的登录效率. 为了实现负载平衡,域配置前,两台Ad域的DNS应该按如下设置,同时,也为了避免在AD02上,选择“将域控制器添加到现有域”时出 ...

  4. Ubuntu 16.04下docker ce的安装

    卸载版本的docker sudo apt-get remove docker docker-engine docker.io 安装可选内核模块 从 Ubuntu 14.04 开始,一部分内核模块移到了 ...

  5. Garlands CodeForces - 707E (离线树状数组)

    大意: 给定n*m矩阵, k条链, 链上每个点有权值, 每次操作可以关闭或打开一条链或询问一个子矩阵内未关闭的权值和. 关键询问操作比较少, 可以枚举每条链, 暴力算出该条链对每个询问的贡献. 最后再 ...

  6. 负载均衡中使用 Redis 实现共享 Session

    最近在研究Web架构方面的知识,包括数据库读写分离,Redis缓存和队列,集群,以及负载均衡(LVS),今天就来先学习下我在负载均衡中遇到的问题,那就是session共享的问题. 一.负载均衡 负载均 ...

  7. 使用XML Publisher导出PDF报表

    生成XML数据源有两种方式. 一种是使用存储过程,返回一个clob作为xml数据源. 另一种是直接使用VO中的数据生成xml数据源. 方法一参考: Oracle XML Publisher技巧集锦 O ...

  8. LOV抛出值无效的异常

    在选择LOV中的行返回之后,点击提交的时候始终报值无效的异常. 症状:LOV中有值为   XXX项目,XXX项目(一期) 的时候,当你选择XXX项目 再进行提交,老是报出值无效的异常. 解决方式:在页 ...

  9. 87. Scramble String *HARD* 动态规划

    Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrin ...

  10. hdu4348

    题解: 因为卡空间,所以直接到spoj上面去做了 区间修改的线段树 但是加lazy会把之前的操作修改 正确的解法是lazy不下传,只是在当前计算 但是听说可以记录时间的下传,我弱弱不会 代码: #in ...