1502: [NOI2005]月下柠檬树

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 1169  Solved: 626
[Submit][Status][Discuss]

Description

Input

文件的第1行包含一个整数n和一个实数alpha,表示柠檬树的层数和月亮的光线与地面夹角(单位为弧度)。第2行包含n+1个实数h0,h1,h2,…,hn,表示树离地的高度和每层的高度。第3行包含n个实数r1,r2,…,rn,表示柠檬树每层下底面的圆的半径。上述输入文件中的数据,同一行相邻的两个数之间用一个空格分隔。输入的所有实数的小数点后可能包含1至10位有效数字。

Output

输出1个实数,表示树影的面积。四舍五入保留两位小数。

Sample Input

2 0.7853981633
10.0 10.00 10.00
4.00 5.00

Sample Output

171.97

HINT

1≤n≤500,0.3

Source

求一棵树(圆锥加圆台组成)在平面上的投影的面积。

给定投影角度(0.3 < alpha <= pi/2)。

先来想想圆的投影是什么样子

还是他自己。

再想圆锥投影是什么样子

一个点加一个圆,并且有这个点与该圆的两条切线(该点在圆内部时没有切线)

再想圆台

两个圆,加上两个圆的外公切线组成的一坨图形。

不妨随意画一个。

好难画- -!

大概就转化成这个样子了。

观察这个图形…

轴对称啊- -!

首先AC长是圆心距,可求。

AI长是半径差,可求。

所以CI可求。

连接FC,观察△FAC

2*S△FAC=FG*AC=CI*AF

AF为半径,已知。

所以FG可求。

于是AG可求。

A点坐标已知,所以F点坐标已知。

E点,直接相似即可。

或者用射影定理求EF

概述图中,在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射影定理如下:
BD²=AD·CD
AB²=AC·AD
BC²=CD·AC
#include<cmath>
#include<cstdio>
#include<algorithm>
#define pf(x) ((x)*(x))
using namespace std;
const int N=+;
const double eps=1e-;
typedef pair<double,double> point;
typedef pair<double,double> circle;
struct line{
point s,t;
double k,b;
line(){}
line(point _s,point _t){
s=_s;t=_t;
k=(s.second-t.second)/(s.first-t.first);
b=s.second-s.first*k;
}
const double f(const double x){
return k*x+b;
}
};
int n,n1;double alpha,H[N];
point p;line L[N];circle C[N];
double lb=2e9,rb;
double sina,cosa,tana;
inline void add(const circle &a,const circle &b){
n1++;
sina=(a.second-b.second)/(b.first-a.first);
cosa=sqrt(-pf(sina));
tana=sina/cosa;
L[n1].s=make_pair(a.first+a.second*sina,a.second*cosa);
L[n1].t=make_pair(b.first+b.second*sina,b.second*cosa);
L[n1].k=-tana;
L[n1].b=L[n1].s.second-L[n1].s.first*L[n1].k;
}
inline const double F(const double x){
double re=;
for(int i=;i<=n1;i++) if(x>=L[i].s.first&&x<=L[i].t.first) re=max(re,L[i].f(x));
for(int i=;i<=n;i++) if(x>=C[i].first-C[i].second&&x<=C[i].first+C[i].second) re=max(re,sqrt(pf(C[i].second)-pf(x-C[i].first)));
return re;
}
inline const double simpson(const double l,const double r){
double mid=(l+r)/;
return (F(l)+F(r)+*F(mid))*(r-l)/;
}
inline double asr(double l,double r,double eps,double last){
double mid=(l+r)/;
double L=simpson(l,mid),R=simpson(mid,r);
if(fabs(L+R-last)<=*eps) return L+R+(L+R-last)/;
return asr(l,mid,eps/,L)+asr(mid,r,eps/,R);
}
inline int cmp(const double x){
if(fabs(x)<eps) return ;
return x>?:-;
}
int main(){
scanf("%d%lf",&n,&alpha);
for(int i=;i<=n+;i++) scanf("%lf",&H[i]),H[i]+=H[i-];
for(int i=;i<=n;i++) scanf("%lf",&C[i].second);
double ta=tan(alpha);
p=make_pair(H[n+]/ta,);rb=max(rb,p.first);
double x,r,l,h;
C[n].first=H[n]/ta;
x=C[n].first;r=C[n].second;
lb=min(lb,x-r);
rb=max(rb,x+r);
if(x+r<p.first){
l=pf(r)/(p.first-x);// 射影定理
h=sqrt(pf(r)-pf(l));
L[++n1]=line(make_pair(x+l,h),p);
}
for(int i=n-;i;i--){
C[i].first=H[i]/ta;
x=C[i].first;r=C[i].second;
lb=min(lb,x-r);
rb=max(rb,x+r);
if(cmp(C[i+].first-x-fabs(C[i+].second-r))>)//内含
add(C[i],C[i+]);
}
printf("%.2lf\n",*asr(lb,rb,eps,simpson(lb,rb)));
return ;
}
 

[NOI2005]月下柠檬树[计算几何(simpson)]的更多相关文章

  1. [NOI2005]月下柠檬树(计算几何+积分)

    题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔 地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思 索着人生的哲理. 李哲是一个喜爱思考的孩子,当他看 ...

  2. 【bzoj1502】[NOI2005]月下柠檬树 自适应Simpson积分

    题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思索着人生的哲理.李哲是一个喜爱思考的孩子,当他看到在月 ...

  3. [BZOJ 1502] [NOI2005] 月下柠檬树 【Simpson积分】

    题目链接: BZOJ - 1502 题目分析 这是我做的第一道 Simpson 积分的题目.Simpson 积分是一种用 (fl + 4*fmid + fr) / 6 * (r - l) 来拟合 fl ...

  4. 【BZOJ-1502】月下柠檬树 计算几何 + 自适应Simpson积分

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1017  Solved: 562[Submit][Status] ...

  5. 【BZOJ1502】[NOI2005]月下柠檬树 Simpson积分

    [BZOJ1502][NOI2005]月下柠檬树 Description 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树 ...

  6. BZOJ 1502: [NOI2005]月下柠檬树 [辛普森积分 解析几何 圆]

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1070  Solved: 596[Submit][Status] ...

  7. [NOI2005]月下柠檬树

    题意 F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  autoint Logout 捐赠本站 Probl ...

  8. 5.21 省选模拟赛 luogu P4207 [NOI2005]月下柠檬树 解析几何 自适应辛普森积分法

    LINK:月下柠檬树 之前感觉这道题很鬼畜 实际上 也就想到辛普森积分后就很好做了. 辛普森积分法的式子不再赘述 网上多的是.值得一提的是 这道题利用辛普森积分法的话就是一个解析几何的问题 而并非计算 ...

  9. BZOJ1502:[NOI2005]月下柠檬树——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=1502 https://www.luogu.org/problemnew/show/P4207 李哲 ...

随机推荐

  1. Yii2 session的使用方法(1)

    yii2打开session use yii\web\Session; $session = Yii::$app->session; // check if a session is alread ...

  2. Xcode : svn 无法上传静态库(.a)文件

    1.打开终端,输入cd,空格,然后将需要上传的.a文件所在的文件夹(不是.a文件)拖拽到终端(此办法无需输入繁琐的路径,快捷方便) ,回车:2.之后再输入如下命令:svn add xxx.a,回车:3 ...

  3. Scripting.FileSystemObject对象的详细技巧指南

    Scripting.FileSystemObject对象的详细技巧指南 FileSystemObject对象提供对计算机文件系统的访问: powered by 25175.net 在代码内操作文本文件 ...

  4. 原来找字也可以这样用ElseIf FindStr 手机按键精灵 跟大漠的区别

     原来找字也可以这样用ElseIf FindStr(646, 1109, 776, 1261, "公告小叉", "FFFFFF-333333", 0.9, in ...

  5. java学习之maven

    maven是项目构建工具,能把项目抽象成POM(Project Object Model) Maven使用POM对项目进行构建.打包.文档化等操作 解决了项目需要类库的依赖管理,简化了项目开发环境搭建 ...

  6. web.py开发

    web.py需要使用python2.X,所以安装python版本2.7.9 web.py 是一个轻量级Python web框架,它简单而且功能强大 web.py安装 安装python (1)使用pip ...

  7. java okhttp包的类特点

    1.开始使用这个包时候不习惯,觉得api用起来很别扭,不管是Request okhttpClient formBody只要是设置啥,就必须使用类里面的Builder类,然后一个方法接受一个参数,不停地 ...

  8. scrapy 元素的相对xpath

  9. 【java】 java SPI

    SPI(Service provider interface)是旨在由第三方实现或扩展的API.它可以用于启用框架扩展和可替换组件. 服务是一组众所周知的接口或(通常是抽象的)类.服务提供者是服务的特 ...

  10. Go之对象拷贝

    这里interface{}就相当于c#,java中的object, boy := util.Boy{util.Person{"Eric", 19, "boy"} ...