[NOI2005]月下柠檬树[计算几何(simpson)]
1502: [NOI2005]月下柠檬树
Time Limit: 5 Sec Memory Limit: 64 MB
Submit: 1169 Solved: 626
[Submit][Status][Discuss]
Description
Input
文件的第1行包含一个整数n和一个实数alpha,表示柠檬树的层数和月亮的光线与地面夹角(单位为弧度)。第2行包含n+1个实数h0,h1,h2,…,hn,表示树离地的高度和每层的高度。第3行包含n个实数r1,r2,…,rn,表示柠檬树每层下底面的圆的半径。上述输入文件中的数据,同一行相邻的两个数之间用一个空格分隔。输入的所有实数的小数点后可能包含1至10位有效数字。
Output
输出1个实数,表示树影的面积。四舍五入保留两位小数。
Sample Input
10.0 10.00 10.00
4.00 5.00
Sample Output
HINT
1≤n≤500,0.3
Source
求一棵树(圆锥加圆台组成)在平面上的投影的面积。
给定投影角度(0.3 < alpha <= pi/2)。
先来想想圆的投影是什么样子
还是他自己。
再想圆锥投影是什么样子
一个点加一个圆,并且有这个点与该圆的两条切线(该点在圆内部时没有切线)
再想圆台
两个圆,加上两个圆的外公切线组成的一坨图形。
不妨随意画一个。
好难画- -!
大概就转化成这个样子了。
观察这个图形…
轴对称啊- -!
首先AC长是圆心距,可求。
AI长是半径差,可求。
所以CI可求。
连接FC,观察△FAC
2*S△FAC=FG*AC=CI*AF
AF为半径,已知。
所以FG可求。
于是AG可求。
A点坐标已知,所以F点坐标已知。
E点,直接相似即可。
或者用射影定理求EF
概述图中,在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射影定理如下:BD²=AD·CDAB²=AC·ADBC²=CD·AC
#include<cmath>
#include<cstdio>
#include<algorithm>
#define pf(x) ((x)*(x))
using namespace std;
const int N=+;
const double eps=1e-;
typedef pair<double,double> point;
typedef pair<double,double> circle;
struct line{
point s,t;
double k,b;
line(){}
line(point _s,point _t){
s=_s;t=_t;
k=(s.second-t.second)/(s.first-t.first);
b=s.second-s.first*k;
}
const double f(const double x){
return k*x+b;
}
};
int n,n1;double alpha,H[N];
point p;line L[N];circle C[N];
double lb=2e9,rb;
double sina,cosa,tana;
inline void add(const circle &a,const circle &b){
n1++;
sina=(a.second-b.second)/(b.first-a.first);
cosa=sqrt(-pf(sina));
tana=sina/cosa;
L[n1].s=make_pair(a.first+a.second*sina,a.second*cosa);
L[n1].t=make_pair(b.first+b.second*sina,b.second*cosa);
L[n1].k=-tana;
L[n1].b=L[n1].s.second-L[n1].s.first*L[n1].k;
}
inline const double F(const double x){
double re=;
for(int i=;i<=n1;i++) if(x>=L[i].s.first&&x<=L[i].t.first) re=max(re,L[i].f(x));
for(int i=;i<=n;i++) if(x>=C[i].first-C[i].second&&x<=C[i].first+C[i].second) re=max(re,sqrt(pf(C[i].second)-pf(x-C[i].first)));
return re;
}
inline const double simpson(const double l,const double r){
double mid=(l+r)/;
return (F(l)+F(r)+*F(mid))*(r-l)/;
}
inline double asr(double l,double r,double eps,double last){
double mid=(l+r)/;
double L=simpson(l,mid),R=simpson(mid,r);
if(fabs(L+R-last)<=*eps) return L+R+(L+R-last)/;
return asr(l,mid,eps/,L)+asr(mid,r,eps/,R);
}
inline int cmp(const double x){
if(fabs(x)<eps) return ;
return x>?:-;
}
int main(){
scanf("%d%lf",&n,&alpha);
for(int i=;i<=n+;i++) scanf("%lf",&H[i]),H[i]+=H[i-];
for(int i=;i<=n;i++) scanf("%lf",&C[i].second);
double ta=tan(alpha);
p=make_pair(H[n+]/ta,);rb=max(rb,p.first);
double x,r,l,h;
C[n].first=H[n]/ta;
x=C[n].first;r=C[n].second;
lb=min(lb,x-r);
rb=max(rb,x+r);
if(x+r<p.first){
l=pf(r)/(p.first-x);// 射影定理
h=sqrt(pf(r)-pf(l));
L[++n1]=line(make_pair(x+l,h),p);
}
for(int i=n-;i;i--){
C[i].first=H[i]/ta;
x=C[i].first;r=C[i].second;
lb=min(lb,x-r);
rb=max(rb,x+r);
if(cmp(C[i+].first-x-fabs(C[i+].second-r))>)//内含
add(C[i],C[i+]);
}
printf("%.2lf\n",*asr(lb,rb,eps,simpson(lb,rb)));
return ;
}
[NOI2005]月下柠檬树[计算几何(simpson)]的更多相关文章
- [NOI2005]月下柠檬树(计算几何+积分)
题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔 地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思 索着人生的哲理. 李哲是一个喜爱思考的孩子,当他看 ...
- 【bzoj1502】[NOI2005]月下柠檬树 自适应Simpson积分
题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思索着人生的哲理.李哲是一个喜爱思考的孩子,当他看到在月 ...
- [BZOJ 1502] [NOI2005] 月下柠檬树 【Simpson积分】
题目链接: BZOJ - 1502 题目分析 这是我做的第一道 Simpson 积分的题目.Simpson 积分是一种用 (fl + 4*fmid + fr) / 6 * (r - l) 来拟合 fl ...
- 【BZOJ-1502】月下柠檬树 计算几何 + 自适应Simpson积分
1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1017 Solved: 562[Submit][Status] ...
- 【BZOJ1502】[NOI2005]月下柠檬树 Simpson积分
[BZOJ1502][NOI2005]月下柠檬树 Description 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树 ...
- BZOJ 1502: [NOI2005]月下柠檬树 [辛普森积分 解析几何 圆]
1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1070 Solved: 596[Submit][Status] ...
- [NOI2005]月下柠檬树
题意 F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser autoint Logout 捐赠本站 Probl ...
- 5.21 省选模拟赛 luogu P4207 [NOI2005]月下柠檬树 解析几何 自适应辛普森积分法
LINK:月下柠檬树 之前感觉这道题很鬼畜 实际上 也就想到辛普森积分后就很好做了. 辛普森积分法的式子不再赘述 网上多的是.值得一提的是 这道题利用辛普森积分法的话就是一个解析几何的问题 而并非计算 ...
- BZOJ1502:[NOI2005]月下柠檬树——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=1502 https://www.luogu.org/problemnew/show/P4207 李哲 ...
随机推荐
- html 禁用点击事件
1.css禁用鼠标点击事件 .disabled { pointer-events: none; } 注:(这个没有试过) jquery禁用a标签方法1 $(document).ready(functi ...
- java中获取文件目录
1. web项目得到部署的目录路径(最后包含"/"或"\"): xxx(HttpServletRequest request) { String strDirP ...
- recovery中英对照表 recovery大全图解
一:Recovery主界面 ---reboot system now 重启手机(刷机完毕选择此项就能重新启动系统) ---apply SDcard:up ...
- android 静默安装 卸载 资料汇总
1. android + eclipse + 后台静默安装(一看就会) 2. 适用于android1.5以下版本apk静默安装 3. error: INSTALL_FAILED_SHARED_USER ...
- UpdateData()用法
一.总结UpdateData()函数 UpdateData(true);//用于将屏幕上控件中的数据交换到变量中. UpdateData(false);//用于将数据在屏幕中对应控件中显示出来. ...
- ubuntu:如何制作类似jeso的系统?
chroot 下载ubuntu的core包或base包 chroo后,先安装grub,再kernel,基本就ok了! 提示:mount --bind /proc newroot/proc 可能的问题 ...
- 怎么设置BarTender中二维码大小为25*25
有小伙伴近期问了小编一个问题,说客户需要25*25大小的QR Code二维码,用BarTender怎么做出来?想要指定条形码的大小,还得BarTender符号与版本选项来帮忙.本文小编就来给大家详细讲 ...
- Github上搭建个人博客记录
1.注册,用户名一定要起好,别随便起. 2.登录后,新建一个仓库repositories.new一个. 命名为用户名.github.io.如果发现不一样进Settings修改,rename. 3.仓库 ...
- Mongodb安全认证
Mongodb安全认证在单实例和副本集两种情况下不太一样,单实例相对简单,只要在启动时加上 --auth参数即可,但副本集则需要keyfile. 一.单实例 1.启动服务(先不要加auth参数) 2. ...
- linux环境变量的概述
https://blog.csdn.net/u010533843/article/details/54986646 https://www.linuxidc.com/Linux/2017-08/146 ...