After I read the solution to the problem, I found that my solution was simply unsightly.

Solved 4 out of 7, and my solution to C was hacked, because of my incorrect order when i meet in the middle.

I wasted about 20 mins on problem A due to the incomprehensible description, at last i just find a harder solution and passed the pretests.

Neither have i read the questions calmly nor assigned time, that's why i got an unacceptable rank.

1073A - Diverse Substring

1073A - Diverse Substring

Notice that the string of two distinct letter is already diverse. That implies that the answer is "NO" if and only if all the letters in the string are the same. Otherwise you can check all pairs of adjacent letters in \(O(n)\)

Overall complexity: \(O(n)\)

n = int(input())
s = input()
for i in range(n - 1):
if (s[i] != s[i + 1]):
print("YES")
print(s[i], s[i + 1], sep="")
exit(0)
print("NO")

1073B - Vasya and Books

1073B - Vasya and Books

Let's maintain the pointer \(pos\) to the topmost non-deleted book and whether each book whether is removed from the stack or not. Initially, all books are in a stack, and \(pos\) is 0 (if we store the array 0-indexed). We will process the array \(B\) in the order \(b_1,b_2, \cdots, b_n\). If the current book \(b_i\) is removed from the stack, then the answer for it is zero. Otherwise, we will increment the pointer \(pos\) until the equality \(a_{pos} = b_i\) is satisfied, while marking all the intermediate books in the array \(u\). After that, the answer for the book

\(b_i\) will be the number of marked books in the \(u\) array (including itself).

Since the pointer \(pos\) shifts \(n\) times at total, we get a solution with an \(O(n)\) complexity.

#include <bits/stdc++.h>

using namespace std;

const int N = int(2e5) + 9;

int n, a[N], b[N];
bool u[N]; int main() {
scanf("%d", &n);
for(int i = 0; i < n; ++i) {
scanf("%d", a + i);
}
for(int i = 0; i < n; ++i){
scanf("%d", b + i);
} int pos = 0;
for(int i = 0; i < n; ++i){
int x = b[i];
if(u[x]){
printf("0 ");
continue;
} int cnt = 0;
while(true){
++cnt;
u[a[pos]] = true;
if(a[pos] == x) break;
++pos;
} ++pos;
printf("%d ", cnt);
} puts("");
return 0;
}

1073C - Vasya and Robot

1073C - Vasya and Robot

Denote \(d = |x| + |y|\). If \(d>n\), then the answer is -1, since the robot will not have the time to reach \((x, y)\) cell in \(n\) steps. Also, if \(d\) and \(n\) have different parity, then the answer is also -1, as in one move the robot changes the parity of the sum of its coordinates.

In all other cases, the answer exists. Let's use binary search to solve this problem. Consider all segments of length \(len\). For a fixed length of the segment \(len\), let's iterate over the position of the beginning of the segment \(l\). At the same time, we will maintain the cell that the robot will stop at if it execute all commands, except commands with indices \(l,l+1 \cdots,l+len−1\). We denote this position as \((x_0,y_0)\). We also calculate the distances from the cell \((x_0,y_0)\) to the cell \((x,y)\) — the value \(d_0=|x−x_0|+|y−y_0|\). If there is at least one position of the beginning of the segment for which \(d_0 \le len\) then we can change the segment of length \(len\) so that the robot comes to the \((x,y)\) cell, otherwise it can't.

const int maxn = 2e5 + 100;
int n, nx, ny, ans;
char str[maxn];
int lef[maxn], rgt[maxn], up[maxn], down[maxn]; int main() {
while (~scanf("%d %s %d %d", &n, str + 1, &nx, &ny)) {
seta(up, 0), seta(down, 0), seta(rgt, 0), seta(lef, 0);
if (abs(nx) + abs(ny) > n || ((abs(nx) + abs(ny)) & 1) != (n & 1)) return printf("-1\n"), 0;
for (int i = 1; i <= n; ++ i) {
if (str[i] == 'R') rgt[i] ++;
if (str[i] == 'U') up[i] ++;
if (str[i] == 'D') down[i] ++;
if (str[i] == 'L') lef[i] ++;
}
for (int i = 1; i <= n; ++ i) {
up[i] += up[i - 1];
rgt[i] += rgt[i - 1];
down[i] += down[i - 1];
lef[i] += lef[i - 1];
}
ans = 0x7fffffff;
if (nx < 0) {
for (int i = 1; i <= n; ++ i)
swap(lef[i], rgt[i]);
nx = -nx;
}
if (ny < 0) {
for (int i = 1; i <= n; ++ i) {
swap(up[i], down[i]);
}
ny = -ny;
}
if (rgt[n] - lef[n] == nx && up[n] - down[n] == ny)
return printf("0\n"), 0;
if (nx >= 0 && ny >= 0) {
for (int i = 1; i <= n; ++ i) {
int x1 = rgt[i - 1] - lef[i - 1];
int y1 = up[i - 1] - down[i - 1];
int l = i, r = n + 1;
while (l < r) {
int mid = (l + r) >> 1;
int x2 = rgt[n] - rgt[mid] - (lef[n] - lef[mid]);
int y2 = up[n] - up[mid] - (down[n] - down[mid]);
if ((mid - i + 1) >= (abs(nx - (x1 + x2)) + abs(ny - (y1 + y2)))) ans = min(ans, (r = mid) - i + 1); else l = mid + 1;
}
}
}
cout << ans << endl;
}
}

Educational Codeforces Round 53 Editorial的更多相关文章

  1. Educational Codeforces Round 53 E. Segment Sum(数位DP)

    Educational Codeforces Round 53 E. Segment Sum 题意: 问[L,R]区间内有多少个数满足:其由不超过k种数字构成. 思路: 数位DP裸题,也比较好想.由于 ...

  2. Educational Codeforces Round 53 (Rated for Div. 2) (前五题题解)

    这场比赛没有打,后来补了一下,第五题数位dp好不容易才搞出来(我太菜啊). 比赛传送门:http://codeforces.com/contest/1073 A. Diverse Substring ...

  3. Educational Codeforces Round 53 (Rated for Div. 2) E. Segment Sum (数位dp求和)

    题目链接:https://codeforces.com/contest/1073/problem/E 题目大意:给定一个区间[l,r],需要求出区间[l,r]内符合数位上的不同数字个数不超过k个的数的 ...

  4. Educational Codeforces Round 53 (Rated for Div. 2)

    http://codeforces.com/contest/1073 A. Diverse Substring #include <bits/stdc++.h> using namespa ...

  5. [codeforces][Educational Codeforces Round 53 (Rated for Div. 2)D. Berland Fair]

    http://codeforces.com/problemset/problem/1073/D 题目大意:有n个物品(n<2e5)围成一个圈,你有t(t<1e18)元,每次经过物品i,如果 ...

  6. Educational Codeforces Round 53 (Rated for Div. 2) E. Segment Sum

    https://codeforces.com/contest/1073/problem/E 题意 求出l到r之间的符合要求的数之和,结果取模998244353 要求:组成数的数位所用的数字种类不超过k ...

  7. Educational Codeforces Round 53 (Rated for Div. 2) C. Vasya and Robot 【二分 + 尺取】

    任意门:http://codeforces.com/contest/1073/problem/C C. Vasya and Robot time limit per test 1 second mem ...

  8. Educational Codeforces Round 68 Editorial

    题目链接:http://codeforces.com/contest/1194                                            A.Remove a Progre ...

  9. Educational Codeforces Round 53 (Rated for Div. 2)G. Yet Another LCP Problem

    题意:给串s,每次询问k个数a,l个数b,问a和b作为后缀的lcp的综合 题解:和bzoj3879类似,反向sam日神仙...lcp就是fail树上的lca.把点抠出来建虚树,然后在上面dp即可.(感 ...

随机推荐

  1. vertx读取配置文件,获得端口号

    1:在src/conf目录下创建conf.json { } 2:创建Verticle, config().getInteger("http.port", 8080),将会读取配置文 ...

  2. mybatis中使用where in查询时的注意事项

    我使用的时候collection值为mapper的参数名如:int deleteRoleByUserIds(@Param("userIds") String[] userIds); ...

  3. Maven项目常见错误解决方法汇总

    issue 1.Java compiler level does not match the version of the installed Java project facet. 或者 One o ...

  4. [LeetCode] 252. Meeting Rooms_Easy tag: Sort

    Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si ...

  5. http协议基础(三)几种数据传输方式

    说说http协议的一些特点: 1)无状态 http协议是一种自身不对请求和响应之间的通信状态进行保存的协议,即无状态协议. 这种设置的好处是:更快的处理更多的请求事务,确保协议的可伸缩性 不过随着we ...

  6. Trove系列(七)——Trove的Mysql的复制功能介绍

    描述提供各种复制功能的支持对于Trove来说是很关键的.本章节将描述各种使用案例和相关的用户需求.并依次提出了MySQL的初始阶段的实现.Mysql的复制功能介绍概述先介绍一下MySQL的复制功能原理 ...

  7. MySQL从删库到跑路(四)——MySQL数据库创建实例

    作者:天山老妖S 链接:http://blog.51cto.com/9291927 一.创建数据库 1.创建数据库 创建数据库,指定数据库的默认字符集为utf8.create database sch ...

  8. eclipse启动 报错,错误信息为 return exit code=13

    打不开的报错如下图: 解决方法:手工配置Eclipse使用的JDK,在Eclipse的安装目录中找到eclipse.ini文件,增加正确的JDK安装目录,如图 在plugins/ 下一行,增加 -vm ...

  9. SpringMVC中controller返回图片(转)

    本文转自:http://blog.csdn.net/u011637069/article/details/51112187 SpringMVC中controller通过返回ModelAndView然后 ...

  10. Linux基础命令---dumpe2fs

    dumpe2fs 显示ext2.ext3.ext4文件系统的超级快和块组信息.此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE.Fedora. 1.语法 ...