[LeetCode]460.LFU缓存机制
设计并实现最不经常使用(LFU)缓存的数据结构。它应该支持以下操作:get
和 put
。
get(key)
- 如果键存在于缓存中,则获取键的值(总是正数),否则返回 -1。put(key, value)
- 如果键不存在,请设置或插入值。当缓存达到其容量时,它应该在插入新项目之前,使最不经常使用的项目无效。在此问题中,当存在平局(即两个或更多个键具有相同使用频率)时,最近最少使用的键将被去除。
进阶:
你是否可以在 O(1) 时间复杂度内执行两项操作?
示例:
LFUCache cache = new LFUCache( 2 /* capacity (缓存容量) */ ); cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // 返回 1
cache.put(3, 3); // 去除 key 2
cache.get(2); // 返回 -1 (未找到key 2)
cache.get(3); // 返回 3
cache.put(4, 4); // 去除 key 1
cache.get(1); // 返回 -1 (未找到 key 1)
cache.get(3); // 返回 3
cache.get(4); // 返回 4
思路:这道题可以参考上一篇LRU:http://www.cnblogs.com/DarrenChan/p/8744354.html
LFU多了一个频率值的计算,只有当频率值相同的时候,才按照LRU那种方式进行排列,即最近最不经常使用的淘汰。
借鉴一种思想,因为时间复杂度是O(1),所以不能用循环遍历,方法就是采用3个HashMap和1个LinkedHashSet。
第一个hashMap存储put进去的key和value,第二个HashMap存储每个key的频率值,第三个hashMap存储每个频率的相应的key的值的集合。LinkedHashSet存储key的集合,这里用HashSet是因为其是由HashMap底层实现的,可以O(1)时间复杂度查找元素,而且linked是有序的,同一频率值越往后越最近访问。
直接上代码:
import java.util.HashMap;
import java.util.LinkedHashSet; class LFUCache { public int capacity;//容量大小
public HashMap<Integer, Integer> map = new HashMap<>();//存储put进去的key和value
public HashMap<Integer, Integer> frequent = new HashMap<>();//存储每个key的频率值
//存储每个频率的相应的key的值的集合,这里用HashSet是因为其是由HashMap底层实现的,可以O(1)时间复杂度查找元素
//而且linked是有序的,同一频率值越往后越最近访问
public HashMap<Integer, LinkedHashSet<Integer>> list = new HashMap<>();
int min = -1;//标记当前频率中的最小值 public LFUCache(int capacity) {
this.capacity = capacity;
} public int get(int key) {
if(!map.containsKey(key)){
return -1;
}else{
int value = map.get(key);//获取元素的value值
int count = frequent.get(key);
frequent.put(key, count + 1); list.get(count).remove(key);//先移除当前key //更改min的值
if(count == min && list.get(count).size() == 0)
min++; LinkedHashSet<Integer> set = list.containsKey(count + 1) ? list.get(count + 1) : new LinkedHashSet<Integer>();
set.add(key);
list.put(count + 1, set); return value;
} } public void put(int key, int value) {
if(capacity <= 0){
return;
}
//这一块跟get的逻辑一样
if(map.containsKey(key)){
map.put(key, value);
int count = frequent.get(key);
frequent.put(key, count + 1); list.get(count).remove(key);//先移除当前key //更改min的值
if (count == min && list.get(count).size() == 0)
min++; LinkedHashSet<Integer> set = list.containsKey(count + 1) ? list.get(count + 1) : new LinkedHashSet<Integer>();
set.add(key);
list.put(count + 1, set);
}else{
if(map.size() >= capacity){
Integer removeKey = list.get(min).iterator().next();
list.get(min).remove(removeKey);
map.remove(removeKey);
frequent.remove(removeKey);
}
map.put(key, value);
frequent.put(key, 1);
LinkedHashSet<Integer> set = list.containsKey(1) ? list.get(1) : new LinkedHashSet<Integer>();
set.add(key);
list.put(1, set); min = 1;
} } public static void main(String[] args) {
LFUCache lfuCache = new LFUCache(2);
lfuCache.put(2, 1);
lfuCache.put(3, 2);
System.out.println(lfuCache.get(3));
System.out.println(lfuCache.get(2));
lfuCache.put(4, 3);
System.out.println(lfuCache.get(2));
System.out.println(lfuCache.get(3));
System.out.println(lfuCache.get(4));
}
}
原题链接:https://leetcode-cn.com/problems/lfu-cache/description/
[LeetCode]460.LFU缓存机制的更多相关文章
- [Leetcode]146.LRU缓存机制
Leetcode难题,题目为: 运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key ...
- Leetcode 146. LRU 缓存机制
前言 缓存是一种提高数据读取性能的技术,在计算机中cpu和主内存之间读取数据存在差异,CPU和主内存之间有CPU缓存,而且在内存和硬盘有内存缓存.当主存容量远大于CPU缓存,或磁盘容量远大于主存时,哪 ...
- LeetCode 146. LRU缓存机制(LRU Cache)
题目描述 运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - 如果密钥 (k ...
- Java实现 LeetCode 146 LRU缓存机制
146. LRU缓存机制 运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - ...
- [LeetCode] 460. LFU Cache 最近最不常用页面置换缓存器
Design and implement a data structure for Least Frequently Used (LFU) cache. It should support the f ...
- leetcode 460. LFU Cache
hash:存储的key.value.freq freq:存储的freq.key,也就是说出现1次的所有key在一起,用list连接 class LFUCache { public: LFUCache( ...
- leetcode:146. LRU缓存机制
题目描述: 运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - 如果密钥 ( ...
- leetcode 146. LRU Cache 、460. LFU Cache
LRU算法是首先淘汰最长时间未被使用的页面,而LFU是先淘汰一定时间内被访问次数最少的页面,如果存在使用频度相同的多个项目,则移除最近最少使用(Least Recently Used)的项目. LFU ...
- leetcode LRU缓存机制(list+unordered_map)详细解析
运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - 如果密钥 (key) 存 ...
随机推荐
- 为什么有时候PHP没有闭合标签结束符 ?>
找了一些资料,大家对PHP闭合标签的总结如下: 好处:如果这个是一个被别人包含的程序,没有这个结束符,可以减少很多很多问题,比如说:header, setcookie, session_start这些 ...
- JavaScript语言精粹之对象
用object.hasOwnProperty(variable)来确定这个属性名是否为该对象成员,还是来自于原型链. for(my in obj){ if(obj.hasOwnProperty(my) ...
- mysql数据库TINYINT取值范围详解
分享下mysql中TINYINT的取值范围,很基础的一些内容. 在MySQL的数据类型中,Tinyint的取值范围是:带符号的范围是-128到127.无符号的范围是0到255(见官方<MySQL ...
- [na]数据链路层&网络层协议小结截图版
ip层:分组选路 tcp:端到端的通信 中间系统没必要有应用程序,分组选路即可 应用程序中隐藏所有的物理细节. 语音肯定用udp linux主版本 次版本号 修订号 次版本为偶数说明是稳定版.奇数是开 ...
- Chrome多线程下载
https://github.com/jae-jae/camtd https://aria2.github.io/ 切换到解压目录D:\Tools\aria2-1.34.0-win-64bit中,打开 ...
- Duplicate <http> element detected
1.错误描写叙述 org.springframework.beans.factory.parsing.BeanDefinitionParsingException:Configuration p ...
- 50x页面放到本地单独目录下,进行显示
error_page 500 502 503 504 /50x.html; location = /50x.html { root /data0/www/html; }
- 菜鸟学SSH(二)——Struts2国际化手动切换版
国际化(internationalization,i18n)和本地化(localization,l10n)指让产品(出版物,软件,硬件等)能够适应非本地环境,特别是其他的语言和文化.程序在不修改内部代 ...
- Lua官方文档与源码分析
https://www.lua.org/source/5.3/ http://www.cppblog.com/airtrack/archive/2012/09/19/191233.html https ...
- TimescaleDB比拼InfluxDB:如何选择合适的时序数据库?
https://www.itcodemonkey.com/article/9339.html 时序数据已用于越来越多的应用中,包括物联网.DevOps.金融.零售.物流.石油天然气.制造业.汽车.太空 ...