kafka 主要内容介绍
1. kafka介绍
1.1. 主要功能
根据官网的介绍,ApacheKafka®是一个分布式流媒体平台,它主要有3种功能:
1:It lets you publish and subscribe to streams of records.发布和订阅消息流,这个功能类似于消息队列,这也是kafka归类为消息队列框架的原因
2:It lets you store streams of records in a fault-tolerant way.以容错的方式记录消息流,kafka以文件的方式来存储消息流
3:It lets you process streams of records as they occur.可以再消息发布的时候进行处理
1.2. 使用场景
1:Building real-time streaming data pipelines that reliably get data between systems or applications.在系统或应用程序之间构建可靠的用于传输实时数据的管道,消息队列功能
2:Building real-time streaming applications that transform or react to the streams of data。构建实时的流数据处理程序来变换或处理数据流,数据处理功能
1.3. 详细介绍
Kafka目前主要作为一个分布式的发布订阅式的消息系统使用,下面简单介绍一下kafka的基本机制
1.3.1 消息传输流程
Producer即生产者,向Kafka集群发送消息,在发送消息之前,会对消息进行分类,即Topic,上图展示了两个producer发送了分类为topic1的消息,另外一个发送了topic2的消息。
Topic即主题,通过对消息指定主题可以将消息分类,消费者可以只关注自己需要的Topic中的消息
Consumer即消费者,消费者通过与kafka集群建立长连接的方式,不断地从集群中拉取消息,然后可以对这些消息进行处理。
从上图中就可以看出同一个Topic下的消费者和生产者的数量并不是对应的。
1.3.2 kafka服务器消息存储策略
谈到kafka的存储,就不得不提到分区,即partitions,创建一个topic时,同时可以指定分区数目,分区数越多,其吞吐量也越大,但是需要的资源也越多,同时也会导致更高的不可用性,kafka在接收到生产者发送的消息之后,会根据均衡策略将消息存储到不同的分区中。
在每个分区中,消息以顺序存储,最晚接收的的消息会最后被消费。
1.3.3 与生产者的交互
生产者在向kafka集群发送消息的时候,可以通过指定分区来发送到指定的分区中
也可以通过指定均衡策略来将消息发送到不同的分区中
如果不指定,就会采用默认的随机均衡策略,将消息随机的存储到不同的分区中
1.3.4 与消费者的交互
在消费者消费消息时,kafka使用offset来记录当前消费的位置
在kafka的设计中,可以有多个不同的group来同时消费同一个topic下的消息,如图,我们有两个不同的group同时消费,他们的的消费的记录位置offset各不项目,不互相干扰。
对于一个group而言,消费者的数量不应该多余分区的数量,因为在一个group中,每个分区至多只能绑定到一个消费者上,即一个消费者可以消费多个分区,一个分区只能给一个消费者消费
因此,若一个group中的消费者数量大于分区数量的话,多余的消费者将不会收到任何消息。
2. Kafka安装与使用
2.1. 下载
你可以在kafka官网 http://kafka.apache.org/downloads下载到最新的kafka安装包,选择下载二进制版本的tgz文件,根据网络状态可能需要fq,这里我们选择的版本是0.11.0.1,目前的最新版
2.2. 安装
Kafka是使用scala编写的运行与jvm虚拟机上的程序,虽然也可以在windows上使用,但是kafka基本上是运行在linux服务器上,因此我们这里也使用linux来开始今天的实战。
首先确保你的机器上安装了jdk,kafka需要java运行环境,以前的kafka还需要zookeeper,新版的kafka已经内置了一个zookeeper环境,所以我们可以直接使用
说是安装,如果只需要进行最简单的尝试的话我们只需要解压到任意目录即可,这里我们将kafka压缩包解压到/home目录
2.3. 配置
在kafka解压目录下下有一个config的文件夹,里面放置的是我们的配置文件
consumer.properites 消费者配置,这个配置文件用于配置于2.5节中开启的消费者,此处我们使用默认的即可
producer.properties 生产者配置,这个配置文件用于配置于2.5节中开启的生产者,此处我们使用默认的即可
server.properties kafka服务器的配置,此配置文件用来配置kafka服务器,目前仅介绍几个最基础的配置
- broker.id 申明当前kafka服务器在集群中的唯一ID,需配置为integer,并且集群中的每一个kafka服务器的id都应是唯一的,我们这里采用默认配置即可
- listeners 申明此kafka服务器需要监听的端口号,如果是在本机上跑虚拟机运行可以不用配置本项,默认会使用localhost的地址,如果是在远程服务器上运行则必须配置,例如:
listeners=PLAINTEXT:// 192.168.180.128:9092。并确保服务器的9092端口能够访问
3.zookeeper.connect 申明kafka所连接的zookeeper的地址 ,需配置为zookeeper的地址,由于本次使用的是kafka高版本中自带zookeeper,使用默认配置即可
zookeeper.connect=localhost:2181
2.4. 运行
- 启动zookeeper
cd进入kafka解压目录,输入
bin/zookeeper-server-start.sh config/zookeeper.properties
启动zookeeper成功后会看到如下的输出
2.启动kafka
cd进入kafka解压目录,输入
bin/kafka-server-start.sh config/server.properties
启动kafka成功后会看到如下的输出
2.5. 第一个消息
2.5.1 创建一个topic
Kafka通过topic对同一类的数据进行管理,同一类的数据使用同一个topic可以在处理数据时更加的便捷
在kafka解压目录打开终端,输入
bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic
test
创建一个名为test的topic
在创建topic后可以通过输入
bin/kafka-topics.sh --list --zookeeper localhost:2181
来查看已经创建的topic
2.4.2
创建一个消息消费者
在kafka解压目录打开终端,输入
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic
test
--from-beginning
可以创建一个用于消费topic为test的消费者
消费者创建完成之后,因为还没有发送任何数据,因此这里在执行后没有打印出任何数据
不过别着急,不要关闭这个终端,打开一个新的终端,接下来我们创建第一个消息生产者
2.4.3 创建一个消息生产者
在kafka解压目录打开一个新的终端,输入
bin/kafka-console-producer.sh --broker-list localhost:9092 --topic
test
在执行完毕后会进入的编辑器页面
在发送完消息之后,可以回到我们的消息消费者终端中,可以看到,终端中已经打印出了我们刚才发送的消息
3. 使用java程序
跟上节中一样,我们现在在java程序中尝试使用kafka
3.1 创建Topic
public static void main(String[] args) {
//创建topic
Properties props = new Properties();
props.put("bootstrap.servers", "192.168.180.128:9092");
AdminClient adminClient = AdminClient.create(props);
ArrayList<NewTopic> topics = new ArrayList<NewTopic>();
NewTopic newTopic = new NewTopic("topic-test", 1, (short) 1);
topics.add(newTopic);
CreateTopicsResult result = adminClient.createTopics(topics);
try {
result.all().get();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
}
使用AdminClient API可以来控制对kafka服务器进行配置,我们这里使用NewTopic(String name, int numPartitions, short replicationFactor)的构造方法来创建了一个名为“topic-test”,分区数为1,复制因子为1的Topic.
3.2 Producer生产者发送消息
public static void main(String[] args){
Properties props = new Properties();
props.put("bootstrap.servers", "192.168.180.128:9092");
props.put("acks", "all");
props.put("retries", 0);
props.put("batch.size", 16384);
props.put("linger.ms", 1);
props.put("buffer.memory", 33554432);
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
Producer<String, String> producer = new KafkaProducer<String, String>(props);
for (int i = 0; i < 100; i++)
producer.send(new ProducerRecord<String, String>("topic-test", Integer.toString(i), Integer.toString(i)));
producer.close();
}
使用producer发送完消息可以通过2.5中提到的服务器端消费者监听到消息。也可以使用接下来介绍的java消费者程序来消费消息
3.3 Consumer消费者消费消息
public static void main(String[] args){
Properties props = new Properties();
props.put("bootstrap.servers", "192.168.12.65:9092");
props.put("group.id", "test");
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms", "1000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
final KafkaConsumer<String, String> consumer = new KafkaConsumer<String,String>(props);
consumer.subscribe(Arrays.asList("topic-test"),new ConsumerRebalanceListener() {
public void onPartitionsRevoked(Collection<TopicPartition> collection) {
}
public void onPartitionsAssigned(Collection<TopicPartition> collection) {
//将偏移设置到最开始
consumer.seekToBeginning(collection);
}
});
while (true) {
ConsumerRecords<String, String> records = consumer.poll(100);
for (ConsumerRecord<String, String> record : records)
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
}
}
这里我们使用Consume API 来创建了一个普通的java消费者程序来监听名为“topic-test”的Topic,每当有生产者向kafka服务器发送消息,我们的消费者就能收到发送的消息。
4. 使用spring-kafka
Spring-kafka是正处于孵化阶段的一个spring子项目,能够使用spring的特性来让我们更方便的使用kafka
4.1 基本配置信息
与其他spring的项目一样,总是离不开配置,这里我们使用java配置来配置我们的kafka消费者和生产者。
- 引入pom文件
<!--kafka start-->
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>0.11.0.1</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-streams</artifactId>
<version>0.11.0.1</version>
</dependency>
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>1.3.0.RELEASE</version>
</dependency>
- 创建配置类
我们在主目录下新建名为KafkaConfig的类
@Configuration
@EnableKafka
public class KafkaConfig {
}
- 配置Topic
在kafkaConfig类中添加配置
//topic config Topic的配置开始
@Bean
public KafkaAdmin admin() {
Map<String, Object> configs = new HashMap<String, Object>();
configs.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.180.128:9092");
return new KafkaAdmin(configs);
}
@Bean
public NewTopic topic1() {
return new NewTopic("foo", 10, (short) 2);
}
//topic的配置结束
- 配置生产者Factort及Template
//producer config start
@Bean
public ProducerFactory<Integer, String> producerFactory() {
return new DefaultKafkaProducerFactory<Integer,String>(producerConfigs());
}
@Bean
public Map<String, Object> producerConfigs() {
Map<String, Object> props = new HashMap<String,Object>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.180.128:9092");
props.put("acks", "all");
props.put("retries", 0);
props.put("batch.size", 16384);
props.put("linger.ms", 1);
props.put("buffer.memory", 33554432);
props.put("key.serializer", "org.apache.kafka.common.serialization.IntegerSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
return props;
}
@Bean
public KafkaTemplate<Integer, String> kafkaTemplate() {
return new KafkaTemplate<Integer, String>(producerFactory());
}
//producer config end
5.配置ConsumerFactory
//consumer config start
@Bean
public ConcurrentKafkaListenerContainerFactory<Integer,String> kafkaListenerContainerFactory(){
ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<Integer, String>();
factory.setConsumerFactory(consumerFactory());
return factory;
}
@Bean
public ConsumerFactory<Integer,String> consumerFactory(){
return new DefaultKafkaConsumerFactory<Integer, String>(consumerConfigs());
}
@Bean
public Map<String,Object> consumerConfigs(){
HashMap<String, Object> props = new HashMap<String, Object>();
props.put("bootstrap.servers", "192.168.180.128:9092");
props.put("group.id", "test");
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms", "1000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.IntegerDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
return props;
}
//consumer config end
4.2 创建消息生产者
//使用spring-kafka的template发送一条消息 发送多条消息只需要循环多次即可
public static void main(String[] args) throws ExecutionException, InterruptedException {
AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext(KafkaConfig.class);
KafkaTemplate<Integer, String> kafkaTemplate = (KafkaTemplate<Integer, String>) ctx.getBean("kafkaTemplate");
String data="this is a test message";
ListenableFuture<SendResult<Integer, String>> send = kafkaTemplate.send("topic-test", 1, data);
send.addCallback(new ListenableFutureCallback<SendResult<Integer, String>>() {
public void onFailure(Throwable throwable) {
}
public void onSuccess(SendResult<Integer, String> integerStringSendResult) {
}
});
}
4.3 创建消息消费者
我们首先创建一个一个用于消息监听的类,当名为”topic-test”的topic接收到消息之后,我们的这个listen方法就会调用。
public class SimpleConsumerListener {
private final static Logger logger = LoggerFactory.getLogger(SimpleConsumerListener.class);
private final CountDownLatch latch1 = new CountDownLatch(1);
@KafkaListener(id = "foo", topics = "topic-test")
public void listen(byte[] records) {
//do something here
this.latch1.countDown();
}
}
我们同时也需要将这个类作为一个Bean配置到KafkaConfig中
@Bean
public SimpleConsumerListener simpleConsumerListener(){
return new SimpleConsumerListener();
}
默认spring-kafka会为每一个监听方法创建一个线程来向kafka服务器拉取消息
kafka 主要内容介绍的更多相关文章
- Kafka管理工具介绍【转】
Kafka内部提供了许多管理脚本,这些脚本都放在$KAFKA_HOME/bin目录下,而这些类的实现都是放在源码的kafka/core/src/main/scala/kafka/tools/路径下. ...
- _00017 Kafka的体系结构介绍以及Kafka入门案例(0基础案例+Java API的使用)
博文作者:妳那伊抹微笑 itdog8 地址链接 : http://www.itdog8.com(个人链接) 博客地址:http://blog.csdn.net/u012185296 博文标题:_000 ...
- kafka之基本介绍
什么是kafka? Kakfa起初是由LinkedIn公司开发的一个分布式的消息系统,后成为Apache的一部分,它使用Scala编写,以可水平扩展和高吞吐率而被广泛使用.目前越来越多的开源分布式处理 ...
- 第1节 kafka消息队列:2、kafka的架构介绍以及基本组件模型介绍
3.kafka的架构模型 1.producer:消息的生产者,主要是用于生产消息的.主要是接入一些外部的数据源,从外部获取数据,比如说我们可以从flume获取数据,还可以通过ftp传入数据等,还可以通 ...
- AppleWatch开发教程之Watch应用对象新增内容介绍以及编写运行代码
AppleWatch开发教程之Watch应用对象新增内容介绍以及编写运行代码 添加Watch应用对象时新增内容介绍 Watch应用对象添加到创建的项目中后,会包含两个部分:Watch App 和 Wa ...
- 03_MyBatis基本查询,mapper文件的定义,测试代码的编写,resultMap配置返回值,sql片段配置,select标签标签中的内容介绍,配置使用二级缓存,使用别名的数据类型,条件查询ma
1 PersonTestMapper.xml中的内容如下: <?xmlversion="1.0"encoding="UTF-8"?> < ...
- 四、Redis通配符介绍、命令缩写介绍和后面内容介绍讲解。
1.通配符介绍 ? 匹配一个字符 * 匹配任意个(包括 0 个)字符 [] 匹配括号间任一字符,可以使用 "-" 符号表示一个范围,如 a[b-d]匹配 "ab" ...
- Kafka相关内容总结(概念和原理)
说明 主要内容是在网上的一些文章中整理出来: 加粗的字体是比较重要的内容,部分是自己的经验和理解: 整理的目的主要是为了方便查阅: 为什么需要消息系统 解耦: 在项目启动之初来预测将来项目会碰到什么需 ...
- kafka SASL认证介绍及自定义SASL PLAIN认证功能
目录 kafka 2.x用户认证方式小结 SASL/PLAIN实例(配置及客户端) broker配置 客户端配置 自定义SASL/PLAIN认证(二次开发) kafka2新的callback接口介绍 ...
随机推荐
- Code Forces 543A Writing Code
题目描述 Programmers working on a large project have just received a task to write exactly mm lines of c ...
- Centos7 安装 ActiveMQ 5.15.1
环境 [root@node1 ~]# cat /etc/redhat-release CentOS Linux release (Core) [root@node1 ~]# uname -r -.el ...
- canvas知识点积累
fillRect(x,y,width,height) 填充一个矩形区域,绘制已填色的矩形,默认填充颜色为黑色.x:矩形左上横坐标,y:矩形左上纵坐标,width:矩形宽度,height:矩形高度. s ...
- Codeforces Round #272 (Div. 2) D. Dreamoon and Sets 构造
D. Dreamoon and Sets 题目连接: http://www.codeforces.com/contest/476/problem/D Description Dreamoon like ...
- Java Web c3p0 pool池泄漏优化与日志分析
问题跟踪: 近期在整合SSH(spring.springmvc.hibernate)项目,提供给第三方服务.每当调用内存池达到上限之后,外界调用服务直接失败,提示[cannot open connec ...
- 使用MFC做一个简单的‘能自动生成小学生四则运算的软件’
这是软件工程的第一次作业!但由于我们python还没入门,所以这次的要求是‘语言不限’. 小学期做过一个关于MFC的‘资金管理系统’,也正好可以有界面,所以就选择了自己很熟悉的MFC来做这个作业! 1 ...
- @Transactional导致AbstractRoutingDataSource动态数据源无法切换的解决办法
上午花了大半天排查一个多数据源主从切换的问题,记录一下: 背景: 项目的数据库采用了读写分离多数据源,采用AOP进行拦截,利用ThreadLocal及AbstractRoutingDataSource ...
- HTML解析利器HtmlAgilityPack
一个.NET下的HTML解析类库HtmlAgilityPack.HtmlAgilityPack是一个支持用XPath来解析HTML的类库,在花了一点时间学习了解HtmlAgilityPack的API和 ...
- TVS二极管和稳压二极管的区别
TVS二极管和稳压二极管的区别 TVS管超过它的耐压值后,会瞬间导通短路,反应速度在ns级, 而稳压管是稳压作用的,超过它的稳压值,只要功率不超过它的耐受值,就会稳定在它的稳压值范围内. TVS是瞬态 ...
- 作为互联网人,你必须知道的一些IT类网站