Exercise:Convolution and Pooling

习题链接:Exercise:Convolution and Pooling

cnnExercise.m

%% CS294A/CS294W Convolutional Neural Networks Exercise

%  Instructions
% ------------
%
% This file contains code that helps you get started on the
% convolutional neural networks exercise. In this exercise, you will only
% need to modify cnnConvolve.m and cnnPool.m. You will not need to modify
% this file. %%======================================================================
%% STEP : Initialization
% Here we initialize some parameters used for the exercise. imageDim = ; % image dimension
imageChannels = ; % number of channels (rgb, so ) patchDim = ; % patch dimension
numPatches = ; % number of patches visibleSize = patchDim * patchDim * imageChannels; % number of input units
outputSize = visibleSize; % number of output units
hiddenSize = ; % number of hidden units epsilon = 0.1; % epsilon for ZCA whitening poolDim = ; % dimension of pooling region %%======================================================================
%% STEP : Train a sparse autoencoder (with a linear decoder) to learn
% features from color patches. If you have completed the linear decoder
% execise, use the features that you have obtained from that exercise,
% loading them into optTheta. Recall that we have to keep around the
% parameters used in whitening (i.e., the ZCA whitening matrix and the
% meanPatch) % --------------------------- YOUR CODE HERE --------------------------
% Train the sparse autoencoder and fill the following variables with
% the optimal parameters: optTheta = zeros(*hiddenSize*visibleSize+hiddenSize+visibleSize, );
ZCAWhite = zeros(visibleSize, visibleSize);
meanPatch = zeros(visibleSize, ); load STL10Features.mat % -------------------------------------------------------------------- % Display and check to see that the features look good
W = reshape(optTheta(:visibleSize * hiddenSize), hiddenSize, visibleSize);
b = optTheta(*hiddenSize*visibleSize+:*hiddenSize*visibleSize+hiddenSize); displayColorNetwork( (W*ZCAWhite)'); %%======================================================================
%% STEP : Implement and test convolution and pooling
% In this step, you will implement convolution and pooling, and test them
% on a small part of the data set to ensure that you have implemented
% these two functions correctly. In the next step, you will actually
% convolve and pool the features with the STL10 images. %% STEP 2a: Implement convolution
% Implement convolution in the function cnnConvolve in cnnConvolve.m % Note that we have to preprocess the images in the exact same way
% we preprocessed the patches before we can obtain the feature activations. load stlTrainSubset.mat % loads numTrainImages, trainImages, trainLabels %% Use only the first images for testing
convImages = trainImages(:, :, :, :); % NOTE: Implement cnnConvolve in cnnConvolve.m first!
convolvedFeatures = cnnConvolve(patchDim, hiddenSize, convImages, W, b, ZCAWhite, meanPatch); %% STEP 2b: Checking your convolution
% To ensure that you have convolved the features correctly, we have
% provided some code to compare the results of your convolution with
% activations from the sparse autoencoder % For random points
for i = :
featureNum = randi([, hiddenSize]);
imageNum = randi([, ]);
imageRow = randi([, imageDim - patchDim + ]);
imageCol = randi([, imageDim - patchDim + ]); patch = convImages(imageRow:imageRow + patchDim - , imageCol:imageCol + patchDim - , :, imageNum);
patch = patch(:);
patch = patch - meanPatch;
patch = ZCAWhite * patch; features = feedForwardAutoencoder(optTheta, hiddenSize, visibleSize, patch); if abs(features(featureNum, ) - convolvedFeatures(featureNum, imageNum, imageRow, imageCol)) > 1e-
fprintf('Convolved feature does not match activation from autoencoder\n');
fprintf('Feature Number : %d\n', featureNum);
fprintf('Image Number : %d\n', imageNum);
fprintf('Image Row : %d\n', imageRow);
fprintf('Image Column : %d\n', imageCol);
fprintf('Convolved feature : %0.5f\n', convolvedFeatures(featureNum, imageNum, imageRow, imageCol));
fprintf('Sparse AE feature : %0.5f\n', features(featureNum, ));
error('Convolved feature does not match activation from autoencoder');
end
end disp('Congratulations! Your convolution code passed the test.'); %% STEP 2c: Implement pooling
% Implement pooling in the function cnnPool in cnnPool.m % NOTE: Implement cnnPool in cnnPool.m first!
pooledFeatures = cnnPool(poolDim, convolvedFeatures); %% STEP 2d: Checking your pooling
% To ensure that you have implemented pooling, we will use your pooling
% function to pool over a test matrix and check the results. testMatrix = reshape(:, , );
expectedMatrix = [mean(mean(testMatrix(:, :))) mean(mean(testMatrix(:, :))); ...
mean(mean(testMatrix(:, :))) mean(mean(testMatrix(:, :))); ]; testMatrix = reshape(testMatrix, , , , ); pooledFeatures = squeeze(cnnPool(, testMatrix)); if ~isequal(pooledFeatures, expectedMatrix)
disp('Pooling incorrect');
disp('Expected');
disp(expectedMatrix);
disp('Got');
disp(pooledFeatures);
else
disp('Congratulations! Your pooling code passed the test.');
end %%======================================================================
%% STEP : Convolve and pool with the dataset
% In this step, you will convolve each of the features you learned with
% the full large images to obtain the convolved features. You will then
% pool the convolved features to obtain the pooled features for
% classification.
%
% Because the convolved features matrix is very large, we will do the
% convolution and pooling features at a time to avoid running out of
% memory. Reduce this number if necessary stepSize = ;
assert(mod(hiddenSize, stepSize) == , 'stepSize should divide hiddenSize'); load stlTrainSubset.mat % loads numTrainImages, trainImages, trainLabels
load stlTestSubset.mat % loads numTestImages, testImages, testLabels pooledFeaturesTrain = zeros(hiddenSize, numTrainImages, ...
floor((imageDim - patchDim + ) / poolDim), ...
floor((imageDim - patchDim + ) / poolDim) );
pooledFeaturesTest = zeros(hiddenSize, numTestImages, ...
floor((imageDim - patchDim + ) / poolDim), ...
floor((imageDim - patchDim + ) / poolDim) ); tic(); for convPart = :(hiddenSize / stepSize) featureStart = (convPart - ) * stepSize + ;
featureEnd = convPart * stepSize; fprintf('Step %d: features %d to %d\n', convPart, featureStart, featureEnd);
Wt = W(featureStart:featureEnd, :);
bt = b(featureStart:featureEnd); fprintf('Convolving and pooling train images\n');
convolvedFeaturesThis = cnnConvolve(patchDim, stepSize, ...
trainImages, Wt, bt, ZCAWhite, meanPatch);
pooledFeaturesThis = cnnPool(poolDim, convolvedFeaturesThis);
pooledFeaturesTrain(featureStart:featureEnd, :, :, :) = pooledFeaturesThis;
toc();
clear convolvedFeaturesThis pooledFeaturesThis; fprintf('Convolving and pooling test images\n');
convolvedFeaturesThis = cnnConvolve(patchDim, stepSize, ...
testImages, Wt, bt, ZCAWhite, meanPatch);
pooledFeaturesThis = cnnPool(poolDim, convolvedFeaturesThis);
pooledFeaturesTest(featureStart:featureEnd, :, :, :) = pooledFeaturesThis;
toc(); clear convolvedFeaturesThis pooledFeaturesThis; end % You might want to save the pooled features since convolution and pooling takes a long time
save('cnnPooledFeatures.mat', 'pooledFeaturesTrain', 'pooledFeaturesTest');
toc(); %%======================================================================
%% STEP : Use pooled features for classification
% Now, you will use your pooled features to train a softmax classifier,
% using softmaxTrain from the softmax exercise.
% Training the softmax classifer for iterations should take less than
% minutes. % Add the path to your softmax solution, if necessary
% addpath /path/to/solution/ % Setup parameters for softmax
softmaxLambda = 1e-;
numClasses = ;
% Reshape the pooledFeatures to form an input vector for softmax
softmaxX = permute(pooledFeaturesTrain, [ ]);
softmaxX = reshape(softmaxX, numel(pooledFeaturesTrain) / numTrainImages,...
numTrainImages);
softmaxY = trainLabels; options = struct;
options.maxIter = ;
softmaxModel = softmaxTrain(numel(pooledFeaturesTrain) / numTrainImages,...
numClasses, softmaxLambda, softmaxX, softmaxY, options); %%======================================================================
%% STEP : Test classifer
% Now you will test your trained classifer against the test images softmaxX = permute(pooledFeaturesTest, [ ]);
softmaxX = reshape(softmaxX, numel(pooledFeaturesTest) / numTestImages, numTestImages);
softmaxY = testLabels; [pred] = softmaxPredict(softmaxModel, softmaxX);
acc = (pred(:) == softmaxY(:));
acc = sum(acc) / size(acc, );
fprintf('Accuracy: %2.3f%%\n', acc * ); % You should expect to get an accuracy of around % on the test images.

cnnConvolve.m

function convolvedFeatures = cnnConvolve(patchDim, numFeatures, images, W, b, ZCAWhite, meanPatch)
%cnnConvolve Returns the convolution of the features given by W and b with
%the given images
%
% Parameters:
% patchDim - patch (feature) dimension
% numFeatures - number of features
% images - large images to convolve with, matrix in the form
% images(r, c, channel, image number)
% W, b - W, b for features from the sparse autoencoder
% ZCAWhite, meanPatch - ZCAWhitening and meanPatch matrices used for
% preprocessing
%
% Returns:
% convolvedFeatures - matrix of convolved features in the form
% convolvedFeatures(featureNum, imageNum, imageRow, imageCol) numImages = size(images, );
imageDim = size(images, );
imageChannels = size(images, ); convolvedFeatures = zeros(numFeatures, numImages, imageDim - patchDim + , imageDim - patchDim + ); % Instructions:
% Convolve every feature with every large image here to produce the
% numFeatures x numImages x (imageDim - patchDim + ) x (imageDim - patchDim + )
% matrix convolvedFeatures, such that
% convolvedFeatures(featureNum, imageNum, imageRow, imageCol) is the
% value of the convolved featureNum feature for the imageNum image over
% the region (imageRow, imageCol) to (imageRow + patchDim - , imageCol + patchDim - )
%
% Expected running times:
% Convolving with images should take less than minutes
% Convolving with images should take around an hour
% (So to save time when testing, you should convolve with less images, as
% described earlier) % -------------------- YOUR CODE HERE --------------------
% Precompute the matrices that will be used during the convolution. Recall
% that you need to take into account the whitening and mean subtraction
% steps W = W * ZCAWhite;
b = b - W * meanPatch; % -------------------------------------------------------- convolvedFeatures = zeros(numFeatures, numImages, imageDim - patchDim + , imageDim - patchDim + );
for imageNum = :numImages
for featureNum = :numFeatures % convolution of image with feature matrix for each channel
convolvedImage = zeros(imageDim - patchDim + , imageDim - patchDim + );
for channel = :imageChannels % Obtain the feature (patchDim x patchDim) needed during the convolution
% ---- YOUR CODE HERE ----
feature = zeros(patchDim,patchDim); % You should replace this feature = reshape(W(featureNum, (channel - ) * patchDim * patchDim + : channel * patchDim * patchDim ), patchDim, patchDim); % ------------------------ % Flip the feature matrix because of the definition of convolution, as explained later
feature = rot90(squeeze(feature),); % Obtain the image
im = squeeze(images(:, :, channel, imageNum)); % Convolve "feature" with "im", adding the result to convolvedImage
% be sure to do a 'valid' convolution
% ---- YOUR CODE HERE ---- convolvedImage = convolvedImage + conv2(im, feature, 'valid'); % ------------------------ end % Subtract the bias unit (correcting for the mean subtraction as well)
% Then, apply the sigmoid function to get the hidden activation
% ---- YOUR CODE HERE ---- convolvedImage = sigmoid(convolvedImage + b(featureNum)); % ------------------------ % The convolved feature is the sum of the convolved values for all channels
convolvedFeatures(featureNum, imageNum, :, :) = convolvedImage;
end
end end function sigm = sigmoid(x)
sigm = ./ ( + exp(-x));
end

cnnPool.m

function pooledFeatures = cnnPool(poolDim, convolvedFeatures)
%cnnPool Pools the given convolved features
%
% Parameters:
% poolDim - dimension of pooling region
% convolvedFeatures - convolved features to pool (as given by cnnConvolve)
% convolvedFeatures(featureNum, imageNum, imageRow, imageCol)
%
% Returns:
% pooledFeatures - matrix of pooled features in the form
% pooledFeatures(featureNum, imageNum, poolRow, poolCol)
% numImages = size(convolvedFeatures, );
numFeatures = size(convolvedFeatures, );
convolvedDim = size(convolvedFeatures, ); pooledFeatures = zeros(numFeatures, numImages, floor(convolvedDim / poolDim), floor(convolvedDim / poolDim)); % -------------------- YOUR CODE HERE --------------------
% Instructions:
% Now pool the convolved features in regions of poolDim x poolDim,
% to obtain the
% numFeatures x numImages x (convolvedDim/poolDim) x (convolvedDim/poolDim)
% matrix pooledFeatures, such that
% pooledFeatures(featureNum, imageNum, poolRow, poolCol) is the
% value of the featureNum feature for the imageNum image pooled over the
% corresponding (poolRow, poolCol) pooling region
% (see http://ufldl/wiki/index.php/Pooling )
%
% Use mean pooling here.
% -------------------- YOUR CODE HERE -------------------- poolRow = floor(convolvedDim / poolDim);
poolCol = poolRow; for i = :numFeatures
for j = :numImages
for k = :poolRow
for l = :poolCol
pooledFeatures(i, j, k, l) = mean(mean(convolvedFeatures(i, j, (k-)*poolDim+:k*poolDim, (l-)*poolDim+:l*poolDim)));
end
end
end
end end

Accuracy: 80.500%

【DeepLearning】Exercise:Convolution and Pooling的更多相关文章

  1. 【DeepLearning】Exercise:Softmax Regression

    Exercise:Softmax Regression 习题的链接:Exercise:Softmax Regression softmaxCost.m function [cost, grad] = ...

  2. 【DeepLearning】Exercise:Learning color features with Sparse Autoencoders

    Exercise:Learning color features with Sparse Autoencoders 习题链接:Exercise:Learning color features with ...

  3. 【DeepLearning】Exercise: Implement deep networks for digit classification

    Exercise: Implement deep networks for digit classification 习题链接:Exercise: Implement deep networks fo ...

  4. 【DeepLearning】Exercise:Self-Taught Learning

    Exercise:Self-Taught Learning 习题链接:Exercise:Self-Taught Learning feedForwardAutoencoder.m function [ ...

  5. 【DeepLearning】Exercise:PCA and Whitening

    Exercise:PCA and Whitening 习题链接:Exercise:PCA and Whitening pca_gen.m %%============================= ...

  6. 【DeepLearning】Exercise:PCA in 2D

    Exercise:PCA in 2D 习题的链接:Exercise:PCA in 2D pca_2d.m close all %%=================================== ...

  7. 【DeepLearning】Exercise:Vectorization

    Exercise:Vectorization 习题的链接:Exercise:Vectorization 注意点: MNIST图片的像素点已经经过归一化. 如果再使用Exercise:Sparse Au ...

  8. 【DeepLearning】Exercise:Sparse Autoencoder

    Exercise:Sparse Autoencoder 习题的链接:Exercise:Sparse Autoencoder 注意点: 1.训练样本像素值需要归一化. 因为输出层的激活函数是logist ...

  9. 【UFLDL】Exercise: Convolutional Neural Network

    这个exercise需要完成cnn中的forward pass,cost,error和gradient的计算.需要弄清楚每一层的以上四个步骤的原理,并且要充分利用matlab的矩阵运算.大概把过程总结 ...

随机推荐

  1. Python 和 Asyncio 编写在线多人游戏(一)

    在技术和文化领域,大规模多人在线游戏(MMO)毋庸置疑是我们当今世界的潮流之一.很长时间以来,写一个 MMO 游戏这件事总是会涉及到大量的预算与复杂的底层编程技术.不过在最近这几年,事情迅速发生了变化 ...

  2. Jquery——动画效果

    jquery中常用的动画的方法就是hide()与show(). $(element).hide()这段代码可以与这相等element.css("display","non ...

  3. JAVA WEB 解决编码问题的filter

    最近使用Springmvc,GET传输参数的时候,经常出错误,下面介绍添加一个Filter的方法,可以解决这个问题.既支持POST方式也支持GET方式. 首先写一个Filter package com ...

  4. listview下拉刷新 上拉(滑动分页)加载更多

    最 近做的类似于微博的项目中,有个Android功能要使用到listview的向下拉刷新来刷新最新消息,向上拉刷新(滑动分页)来加载更多.新浪微博就是使用这种方式的典型.当用户从网络上读取微博的时候, ...

  5. [译]AngularJS Services 获取后端数据

    原文:ANGULARJS SERVICES – FETCHING SERVER DATA $http是AngularJS内置的服务,能帮助我们完成从服务端获数据.简单的用法就是在你需要数据的时候,发起 ...

  6. C# chart控件基础使用

    基本介绍:chart(图表) 功能:主要用来绘制折线图,柱状图与饼状图,也可达到动态效果(例如作示波器): 需要说明 一个chart可以包含多个chartArea. chartArea是具体的坐标区域 ...

  7. electron vue 开发客户端程序

    文档知识点 https://electronjs.org/docs/tutorial/about (1)Electron通过将Chromium和Node.js合并到同一个运行时环境中,并将其打包为Ma ...

  8. Java同步机制之Monitor监视器与syncrhoized实现原理

    转载请注意原文地址:http://www.cnblogs.com/ygj0930/p/6561667.html  一:Monitor Monitor是一个同步工具,相当于操作系统中的互斥量(mutex ...

  9. Java JDBC编程套路教程

    转载请注明原文地址:http://www.cnblogs.com/ygj0930/p/5847020.html  学习Java开发,一个必须掌握的知识点,就是数据库操作.当程序需要用到的数据达到一定程 ...

  10. ACE中的参数截断工具-truncate

    变量截断工具是将类型A变量赋予类型B变量时使用,可自行判断变量是否需要截断,并且自动进行类型转换. 其全部为c实现 其入口为: ACE_Utils::truncate_cast<int> ...