模型结构与原理

1. 基于CNN的句子建模

这篇论文主要针对的是句子匹配(Sentence Matching)的问题,但是基础问题仍然是句子建模。首先,文中提出了一种基于CNN的句子建模网络,如下图:

图中灰色的部分表示对于长度较短的句子,其后面不足的部分填充的全是0值(Zero Padding)。可以看出,模型解决不同长度句子输入的方法是规定一个最大的可输入句子长度,然后长度不够的部分进行0值的填充;图中的卷积计算和传统的CNN卷积计算无异,而池化则是使用Max-Pooling。

  • 卷积结构的分析

下图示意性地说明了卷积结构的作用,作者认为卷积的作用是从句子中提取出局部的语义组合信息,而多张Feature Map则是从多种角度进行提取,也就是保证提取的语义组合的多样性;而池化的作用是对多种语义组合进行选择,过滤掉一些置信度低的组合(可能这样的组合语义上并无意义)。

2. 基于CNN的句子匹配模型

下面是基于之前的句子模型,建立的两种用于两个句子的匹配模型。

2.1 结构I

模型结构如下图:

简单来说,首先分别单独地对两个句子进行建模(使用上文中的句子模型),从而得到两个相同且固定长度的向量,向量表示句子经过建模后抽象得来的特征信息;然后,将这两个向量作为一个多层感知机(MLP)的输入,最后计算匹配的分数。

这个模型比较简单,但是有一个较大的缺点:两个句子在建模过程中是完全独立的,没有任何交互行为,一直到最后生成抽象的向量表示后才有交互行为(一起作为下一个模型的输入),这样做使得句子在抽象建模的过程中会丧失很多语义细节,同时过早地失去了句子间语义交互计算的机会。因此,推出了第二种模型结构。

2.2 结构II

模型结构如下图:

图中可以看出,这种结构提前了两个句子间的交互行为。

  • 第一层卷积层

  首先从Sentence x中任取一个向量xa,再从Sentence y中将每一个向量和xa进行卷积操作

同理以上操作,将两个句子中所有的向量两两组合,构成2D向量,构成Layer-2。下面给出数学形式化表述:

  • 第一层卷积层后的Max-Pooling层

从而得到Layer-2,然后进行2×2的Max-pooling:

  • 后续的卷积层

后续的卷积层均是传统的二维卷积操作,形式化表述如下:

  • 二维卷积结果后的Pooling层

与第一层卷积层后的简单Max-Pooling方式不同,后续的卷积层的Pooling是一种动态Pooling方法,这种方法来源于参考文献[1]。

  • 结构II的性质
  1. 保留了词序信息;
  2. 更具一般性,实际上结构I是结构II的一种特殊情况(取消指定的权值参数);

实验部分

1. 模型训练及参数

  • 使用基于排序的自定义损失函数(Ranking-based Loss)
  • BP反向传播+随机梯度下降;
  • mini-batch为100-200,并行化;
  • 为了防止过拟合,对于中型和大型数据集,会提前停止模型训练;而对于小型数据集,还会使用Dropout策略;
  • Word2Vector:50维;英文语料为Wikipedia(~1B words),中文语料为微博数据(~300M words);
  • 使用ReLu函数作为激活函数;
  • 卷积窗口为3-word window;
  • 使用Fine tuning;

2. 实验结果

一共做了三个实验,分别是(1)句子自动填充任务,(2)推文与评论的匹配,以及(3)同义句识别;结果如下面的图示:

其实结构I和结构II的结果相差不大,结构II稍好一些;而相比于其他的模型而言,结构I和结构II的优势还是较大的。

《Convolutional Neural Network Architectures for Matching Natural Language Sentences》句子匹配的更多相关文章

  1. Convolutional Neural Network Architectures for Matching Natural Language Sentences

    interaction  n. 互动;一起活动;合作;互相影响 capture vt.俘获;夺取;夺得;引起(注意.想像.兴趣)n.捕获;占领;捕获物;[计算机]捕捉 hence  adv. 从此;因 ...

  2. 《ABCNN: Attention-Based Convolutional Neural Network for Modeling Sentence Pairs》

    代码: keras:https://github.com/phdowling/abcnn-keras tf:https://github.com/galsang/ABCNN 本文是Wenpeng Yi ...

  3. 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)

    ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...

  4. 论文翻译:2019_TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain

    论文地址:TCNN:时域卷积神经网络用于实时语音增强 论文代码:https://github.com/LXP-Never/TCNN(非官方复现) 引用格式:Pandey A, Wang D L. TC ...

  5. 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)

    Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...

  6. 《Bilateral Multi-Perspective Matching for Natural Language Sentences》(句子匹配)

    问题: Natural language sentence matching (NLSM),自然语言句子匹配,是指比较两个句子并判断句子间关系,是许多任务的一项基本技术.针对NLSM任务,目前有两种流 ...

  7. 论文翻译:2020_FLGCNN: A novel fully convolutional neural network for end-to-end monaural speech enhancement with utterance-based objective functions

    论文地址:FLGCNN:一种新颖的全卷积神经网络,用于基于话语的目标函数的端到端单耳语音增强 论文代码:https://github.com/LXP-Never/FLGCCRN(非官方复现) 引用格式 ...

  8. 卷积神经网络(Convolutional Neural Network,CNN)

    全连接神经网络(Fully connected neural network)处理图像最大的问题在于全连接层的参数太多.参数增多除了导致计算速度减慢,还很容易导致过拟合问题.所以需要一个更合理的神经网 ...

  9. Convolutional Neural Network in TensorFlow

    翻译自Build a Convolutional Neural Network using Estimators TensorFlow的layer模块提供了一个轻松构建神经网络的高端API,它提供了创 ...

随机推荐

  1. Mysql 的事务隔离级别

    SQL标准定义了4类隔离级别,包括了一些具体规则,用来限定事务内外的哪些改变是可见的,哪些是不可见的.低级别的隔离级一般支持更高的并发处理,并拥有更低的系统开销.Read Uncommitted(读取 ...

  2. docker搭建gitlab、Redmine

    本地使用windows,setting里面切换至linux 从Docker图标的右键菜单中选中 “Switch to Linux containers ...” Docker Engine运行在Lin ...

  3. Linux下常用命令wget的使用技巧

    Linux下wget是一个下载文件的工具,它用在命令行下.对于Linux用户是必不可少的工具,尤其对于网络管理员 经常要下载一些软件或从远程服务器恢复备份到本地服务器.如果我们使用虚拟主机,处理这样的 ...

  4. 兵器簿之cocoaPods的安装和使用

    以前添加第三方库的时候总是直接去Github下载然后引入,但是如果这些第三方库发生了更新,我们还需要手动去更新项目,所以现在引入之前一直想弄都一直没有弄的cocoaPods,现在演示一把过程 其实非常 ...

  5. Tornado,bootstrap文档链接

    http://demo.pythoner.com/itt2zh/ch1.html#ch1-1 http://www.runoob.com/bootstrap/bootstrap-tutorial.ht ...

  6. CBV流程之View源码解析

    CBV是基于反射实现根据请求方式不同,执行不同的方法. 请求流程:view源码解析 1.urls.py :请求一定来执行视图下的as_view方法.也可以直接点击as_view()来找源码. 2.vi ...

  7. Codeforces 592D - Super M - [树的直径][DFS]

    Time limit 2000 ms Memory limit 262144 kB Source Codeforces Round #328 (Div. 2) Ari the monster is n ...

  8. 反面教材 构造构造 json 数据

    构造构造 json 数据 说说你们在项目中遇到过的最糟糕的代码 - V2EX https://www.v2ex.com/t/214099

  9. Django - 补充目录

    Django项目部署 importlib应用 - django contenttypes - django组件 Django - Model操作 Django - 用户认证.用户组.用户权限 Djan ...

  10. QEMU IO事件处理框架

    Qemu IO事件处理框架 qemu是基于事件驱动的,在基于KVM的qemu模型中,每一个VCPU对应一个qemu线程,且qemu主线程负责各种事件的监听,这里有一个小的IO监听框架,本节对此进行介绍 ...