【BZOJ4036】[HAOI2015]按位或 FWT
【BZOJ4036】[HAOI2015]按位或
Description
Input
第一行输入n表示n个元素,第二行输入2^n个数,第i个数表示选到i-1的概率
Output
仅输出一个数表示答案,绝对误差或相对误差不超过1e-6即可算通过。如果无解则要输出INF
Sample Input
0.25 0.25 0.25 0.25
Sample Output
HINT
对于100%的数据,n<=20
题解:先判无解。然后进行fwt。对于每一项p,一次操作变成p的概率是$p$,两次是$p^2$,三次是$p^3$...所以期望次数就是$p\over (p-1)$。特别地,$2^n-1$的p=1,因为它不需要操作所以次数为0。再fwt回去即可。
手写小数读入优化炸精度调了半个小时~再也不写小数读入优化了~
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef double db;
const int maxn=(1<<20)+4;
const db eps=1e-7;
db f[maxn],g[maxn];
bool vis[30];
int n;
db rd()
{
db ret=0,tmp=0.1; char gc=getchar();
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
if(gc=='.')
{
gc=getchar();
while(gc>='0'&&gc<='9') ret=ret+(gc-'0')*tmp,tmp/=10,gc=getchar();
}
return ret;
}
inline void fwt(db *a)
{
int i,h;
for(h=0;h<n;h++) for(i=0;i<(1<<n);i++) if((i>>h)&1) a[i]+=a[i^(1<<h)];
}
inline void ufwt(db *a)
{
int i,h;
for(h=0;h<n;h++) for(i=0;i<(1<<n);i++) if((i>>h)&1) a[i]-=a[i^(1<<h)];
}
int main()
{
n=rd();
int i,j;
for(i=0;i<(1<<n);i++)
{
scanf("%lf",&f[i]);
if(f[i]>0) for(j=0;j<n;j++) if((i>>j)&1) vis[j]=1;
}
for(j=0;j<n;j++) if(!vis[j])
{
puts("INF");
return 0;
}
fwt(f);
for(i=0;i<(1<<n);i++)
{
if(i==(1<<n)-1) f[i]=0;
else f[i]=f[i]/(f[i]-1);
}
ufwt(f);
printf("%.10lf",f[(1<<n)-1]+1);
return 0;
}//2 0.25 0.25 0.25 0.25
【BZOJ4036】[HAOI2015]按位或 FWT的更多相关文章
- BZOJ4036 [HAOI2015]按位或 FWT
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4036.html 题目传送门 - BZOJ4036 题意 刚开始你有一个数字 $0$ ,每一秒钟你会随机 ...
- BZOJ4036 [HAOI2015]按位或 【minmax容斥 + 期望 + FWT】
题目链接 BZOJ4036 题解 好套路的题啊,,, 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \[E(max\{S\}) = ...
- BZOJ4036 HAOI2015按位或(概率期望+容斥原理)
考虑min-max容斥,改为求位集合内第一次有位变成1的期望时间.求出一次操作选择了S中的任意1的概率P[S],期望时间即为1/P[S]. 考虑怎么求P[S].P[S]=∑p[s] (s&S& ...
- [BZOJ4036] [HAOI2015]按位或
传送门:https://lydsy.com/JudgeOnline/problem.php?id=4036 Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数 ...
- bzoj4036 [HAOI2015]按位或 状压DP + MinMax 容斥
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4036 题解 变成 \(2^n-1\) 的意思显然就是每一个数位都出现了. 那么通过 MinMa ...
- bzoj4036 / P3175 [HAOI2015]按位或
bzoj4036 / P3175 [HAOI2015]按位或 是一个 min-max容斥 的板子题. min-max容斥 式子: $ \displaystyle max(S) = \sum_{T\su ...
- 【BZOJ4036】按位或(Min-Max容斥,FWT)
[BZOJ4036]按位或(Min-Max容斥,FWT) 题面 BZOJ 洛谷 题解 很明显直接套用\(min-max\)容斥. 设\(E(max\{S\})\)表示\(S\)中最晚出现元素出现时间的 ...
- [BZOJ 4036][HAOI2015]按位或
4036: [HAOI2015]按位或 Time Limit: 10 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 746 Solved: 4 ...
- [luogu 3175] [HAOI2015]按位或(min-max容斥+高维前缀和)
[luogu 3175] [HAOI2015]按位或 题面 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行按位或运算.问期望多少秒后,你手上的数字变成2^n ...
随机推荐
- mocha框架下,异步测试代码错误造成的问题----用例超时错误
今天用抹茶(mocha)做个测试,发现有一个测试项目总是超时: describe("DbFactory functions",function(){ it("query ...
- 内存管理 初始化(五)kmem_cache_init 初始化slab分配器(上)
看了下kmem_cache_init,涉及到不同MIGRATE间的buddy system的迁移,kmem_cache的构建,slab分配器头的构建.buddy system的伙伴拆分. 对于SMP系 ...
- hibernate validate
http://docs.jboss.org/hibernate/validator/4.2/reference/zh-CN/html_single/ --hibernate validate htt ...
- Java虚拟机(JVM)你只要看这一篇就够了!
1. Java 内存区域与内存溢出异常 1.1 运行时数据区域 根据<Java 虚拟机规范(Java SE 7 版)>规定,Java 虚拟机所管理的内存如下图所示. 1.1.1 程序计数器 ...
- Visual Studio快捷键大全
快捷键的使用可以简化大家的操作,在一定程度上提高工作的效率,下文中将为大家介绍一些VS中经常用到的快捷键,希望对大家有用. 方法/步骤 关于解决方案和项目 用于快速跳转 用于代码的文本编辑 ...
- 既使用maven又使用lib下的Jar包
maven 使用本地包 lib jar包 依赖一个lib目录 解决方法: # 把本地的lib加入maven编译时的依赖路径 From:http://blog.chinaunix.net/uid-231 ...
- 高德地图api比例尺
20-10m-(19=<zoom<20) 19-10m-(19=<zoom<20) 18-25m-(18=<zoom<19) 17-50m-(17=<zoom ...
- MongoDB(三)-- 执行JS、界面工具
一.执行Js脚本 1.开启mongod服务 2.连接mongodb客户端,./mongo --host 192.168.80.128 --port 27017 3.创建数据库:use testdb1 ...
- AddComponentRecursively
class AddComponentRecursively extends ScriptableWizard { var componentName : String = ""; ...
- 谁在用 Hadoop
谁在用 Hadoop这是个问题.在大数据背景下,Apache Hadoop已经逐渐成为一种标签性,业界对于这一开源分布式技术的了解也在不断加深.但谁才是 Hadoop的最大用户呢?首先想到的当然是它的 ...