【BZOJ4036】[HAOI2015]按位或

Description

刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal的or)操作。选择数字i的概率是p[i]。保证0<=p[i]<=1,Σp[i]=1问期望多少秒后,你手上的数字变成2^n-1。

Input

第一行输入n表示n个元素,第二行输入2^n个数,第i个数表示选到i-1的概率

Output

仅输出一个数表示答案,绝对误差或相对误差不超过1e-6即可算通过。如果无解则要输出INF

Sample Input

2
0.25 0.25 0.25 0.25

Sample Output

2.6666666667

HINT

对于100%的数据,n<=20

题解:先判无解。然后进行fwt。对于每一项p,一次操作变成p的概率是$p$,两次是$p^2$,三次是$p^3$...所以期望次数就是$p\over (p-1)$。特别地,$2^n-1$的p=1,因为它不需要操作所以次数为0。再fwt回去即可。

手写小数读入优化炸精度调了半个小时~再也不写小数读入优化了~

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef double db;
const int maxn=(1<<20)+4;
const db eps=1e-7;
db f[maxn],g[maxn];
bool vis[30];
int n;
db rd()
{
db ret=0,tmp=0.1; char gc=getchar();
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
if(gc=='.')
{
gc=getchar();
while(gc>='0'&&gc<='9') ret=ret+(gc-'0')*tmp,tmp/=10,gc=getchar();
}
return ret;
}
inline void fwt(db *a)
{
int i,h;
for(h=0;h<n;h++) for(i=0;i<(1<<n);i++) if((i>>h)&1) a[i]+=a[i^(1<<h)];
}
inline void ufwt(db *a)
{
int i,h;
for(h=0;h<n;h++) for(i=0;i<(1<<n);i++) if((i>>h)&1) a[i]-=a[i^(1<<h)];
}
int main()
{
n=rd();
int i,j;
for(i=0;i<(1<<n);i++)
{
scanf("%lf",&f[i]);
if(f[i]>0) for(j=0;j<n;j++) if((i>>j)&1) vis[j]=1;
}
for(j=0;j<n;j++) if(!vis[j])
{
puts("INF");
return 0;
}
fwt(f);
for(i=0;i<(1<<n);i++)
{
if(i==(1<<n)-1) f[i]=0;
else f[i]=f[i]/(f[i]-1);
}
ufwt(f);
printf("%.10lf",f[(1<<n)-1]+1);
return 0;
}//2 0.25 0.25 0.25 0.25

【BZOJ4036】[HAOI2015]按位或 FWT的更多相关文章

  1. BZOJ4036 [HAOI2015]按位或 FWT

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4036.html 题目传送门 - BZOJ4036 题意 刚开始你有一个数字 $0$ ,每一秒钟你会随机 ...

  2. BZOJ4036 [HAOI2015]按位或 【minmax容斥 + 期望 + FWT】

    题目链接 BZOJ4036 题解 好套路的题啊,,, 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \[E(max\{S\}) = ...

  3. BZOJ4036 HAOI2015按位或(概率期望+容斥原理)

    考虑min-max容斥,改为求位集合内第一次有位变成1的期望时间.求出一次操作选择了S中的任意1的概率P[S],期望时间即为1/P[S]. 考虑怎么求P[S].P[S]=∑p[s] (s&S& ...

  4. [BZOJ4036] [HAOI2015]按位或

    传送门:https://lydsy.com/JudgeOnline/problem.php?id=4036 Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数 ...

  5. bzoj4036 [HAOI2015]按位或 状压DP + MinMax 容斥

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4036 题解 变成 \(2^n-1\) 的意思显然就是每一个数位都出现了. 那么通过 MinMa ...

  6. bzoj4036 / P3175 [HAOI2015]按位或

    bzoj4036 / P3175 [HAOI2015]按位或 是一个 min-max容斥 的板子题. min-max容斥 式子: $ \displaystyle max(S) = \sum_{T\su ...

  7. 【BZOJ4036】按位或(Min-Max容斥,FWT)

    [BZOJ4036]按位或(Min-Max容斥,FWT) 题面 BZOJ 洛谷 题解 很明显直接套用\(min-max\)容斥. 设\(E(max\{S\})\)表示\(S\)中最晚出现元素出现时间的 ...

  8. [BZOJ 4036][HAOI2015]按位或

    4036: [HAOI2015]按位或 Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 746  Solved: 4 ...

  9. [luogu 3175] [HAOI2015]按位或(min-max容斥+高维前缀和)

    [luogu 3175] [HAOI2015]按位或 题面 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行按位或运算.问期望多少秒后,你手上的数字变成2^n ...

随机推荐

  1. [转帖]CentOS下iRedMail安装配置

    CentOS下iRedMail安装配置 中文名为艾瑞得邮件,由 rhms 项目更名而来.是针对 Linux 设计的邮件服务器解决方案,是在操作系统安装好后使用的一套 shell 脚本,用于快速部署一套 ...

  2. wamp 配置虚拟主机

    1.首先打开apache的配置文件httpd.conf,并去掉#Include conf/extra/httpd-vhosts.conf前面的#,启用虚拟主机功能 2.先把localhost配置好,免 ...

  3. Capability Model

    Data Scientist, Analytics We’re looking for data scientists to work on our core and business product ...

  4. 源码分析二(ArrayList与LinkedList的区别)

    一:首先看一下ArrayList类的结构体系: public class ArrayList<E> extends AbstractList<E> implements Lis ...

  5. flume配置文件

    读文件log传入kafka中 agent.sources = s1 agent.channels = c1 agent.sinks = k1 agent.sources.s1.type=exec ag ...

  6. Java求解汉诺塔问题

    汉诺塔问题的描述如下:有3根柱子A.B和C,在A上从上往下按照从小到大的顺序放着一些圆盘,以B为中介,把盘子全部移动到C上.移动过程中,要求任意盘子的下面要么没有盘子,要么只能有比它大的盘子.编程实现 ...

  7. grid响应式布局

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. iOS 关于信鸽推送点击推送通知的处理

    最近的项目中使用了推送模块,使用的是企鹅帝国的信鸽推送服务,关于具体怎么推送的,证书如何设置,我不再赘述,一来开发文档中已经讲的非常清楚,二来在网上一搜的话也能搜到一大堆:在这里主要写下关于推送的通知 ...

  9. iOS App Extensions

    一.扩展概述 扩展(Extension)是iOS 8中引入的一个非常重要的新特性.扩展让app之间的数据交互成为可能.用户可以在app中使用其他应用提供的功能,而无需离开当前的应用. 在iOS 8系统 ...

  10. Top 20 NuGet packages for captcha

    Top 20 NuGet packages for captcha CaptchaMvc.Mvc4 CaptchaMvc will implement your web MVC application ...