【CF700E】Cool Slogans

题意:给你一个字符串S,求一个最长的字符串序列$s_1,s_2,...,s_k$,满足$\forall s_i$是S的子串,且$s_i$在$s_{i-1}$里出现了2次。

$|S|\le 10^5$

题解:容易想到pre树的性质。定义一个字符串的tail为它的出现次数>=2的最长的后缀。对于结束节点来说,它的tail就是它的pre。但是对于一般的点,我们需要不断沿着pre向上找,找到第一个在原串出现2次的节点才能得到tail。具体做法是,我们可以记录spre[i]表示最上面一个没有在i中出现两次的点,f[i]代表从沿着spre走到根的路径长度(spre[i]也是最上面一个f不变的点)。那么,如果i包含sp[pre[i]],则sp[i]=i,f[i]=f[pre[i]]+1;否则sp[i]=sp[pre[i]],f[i]=f[pre[i]]。

那么如何检查串a是否在串b中出现2次呢?可以用线段树维护right集合,如果串a在指定范围内出现过,则说明a在b中出现了2次。如何维护right集合呢?线段树合并即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int maxn=400010;
int n,tot,Cnt,cnt,last,ans;
int ch[maxn][26],pre[maxn],mx[maxn],to[maxn],nxt[maxn],head[maxn],f[maxn],pos[maxn],rt[maxn],val[maxn],sf[maxn];
struct sag
{
int ls,rs;
}s[maxn*50];
char str[maxn];
inline void extend(int x)
{
int np=++Cnt,p=last;
mx[np]=mx[p]+1,last=np;
for(;p&&!ch[p][x];p=pre[p]) ch[p][x]=np;
if(!p) pre[np]=1;
else
{
int q=ch[p][x];
if(mx[q]==mx[p]+1) pre[np]=q;
else
{
int nq=++Cnt;
mx[nq]=mx[p]+1,pre[nq]=pre[q],pre[np]=pre[q]=nq;
memcpy(ch[nq],ch[q],sizeof(ch[q]));
for(;p&&ch[p][x]==q;p=pre[p]) ch[p][x]=nq;
}
}
}
inline void add(int a,int b)
{
to[cnt]=b,nxt[cnt]=head[a],head[a]=cnt++;
}
void insert(int l,int r,int &x,int a)
{
x=++tot;
if(l==r) return ;
int mid=(l+r)>>1;
if(a<=mid) insert(l,mid,s[x].ls,a);
else insert(mid+1,r,s[x].rs,a);
}
int merge(int a,int b)
{
if(!a||!b) return a^b;
int c=++tot;
s[c].ls=merge(s[a].ls,s[b].ls),s[c].rs=merge(s[a].rs,s[b].rs);
return c;
}
bool count(int l,int r,int x,int a,int b)
{
if(!x) return 0;
if(a<=l&&r<=b) return 1;
int mid=(l+r)>>1;
if(b<=mid) return count(l,mid,s[x].ls,a,b);
if(a>mid) return count(mid+1,r,s[x].rs,a,b);
return count(l,mid,s[x].ls,a,b)|count(mid+1,r,s[x].rs,a,b);
}
void dfs1(int x)
{
int i;
for(i=head[x];i!=-1;i=nxt[i]) dfs1(to[i]),pos[x]=pos[to[i]],rt[x]=merge(rt[x],rt[to[i]]);
}
void dfs2(int x)
{
ans=max(ans,f[x]);
int i;
for(i=head[x];i!=-1;i=nxt[i])
{
int ct=count(0,n-1,rt[sf[x]],pos[to[i]]+mx[sf[x]]-mx[to[i]],pos[to[i]]-1);
if(ct) f[to[i]]=f[x]+1,sf[to[i]]=to[i];
else f[to[i]]=f[x],sf[to[i]]=sf[x];
dfs2(to[i]);
}
}
int main()
{
//freopen("cf700E.in","r",stdin);
scanf("%d%s",&n,str);
int i;
Cnt=last=1;
memset(head,-1,sizeof(head));
for(i=0;i<n;i++) extend(str[i]-'a'),pos[last]=i,insert(0,n-1,rt[last],i);
for(i=2;i<=Cnt;i++) add(pre[i],i);
dfs1(1);
for(i=head[1];i!=-1;i=nxt[i]) f[to[i]]=1,sf[to[i]]=to[i],dfs2(to[i]);
printf("%d",ans);
return 0;
}

【CF700E】Cool Slogans 后缀自动机+线段树合并的更多相关文章

  1. Codeforces.700E.Cool Slogans(后缀自动机 线段树合并 DP)

    题目链接 \(Description\) 给定一个字符串\(s[1]\).一个字符串序列\(s[\ ]\)满足\(s[i]\)至少在\(s[i-1]\)中出现过两次(\(i\geq 2\)).求最大的 ...

  2. BZOJ3413: 匹配(后缀自动机 线段树合并)

    题意 题目链接 Sol 神仙题Orz 后缀自动机 + 线段树合并... 首先可以转化一下模型(想不到qwq):问题可以转化为统计\(B\)中每个前缀在\(A\)中出现的次数.(画一画就出来了) 然后直 ...

  3. cf666E. Forensic Examination(广义后缀自动机 线段树合并)

    题意 题目链接 Sol 神仙题Orz 后缀自动机 + 线段树合并 首先对所有的\(t_i\)建个广义后缀自动机,这样可以得到所有子串信息. 考虑把询问离线,然后把\(S\)拿到自动机上跑,同时维护一下 ...

  4. [Luogu5161]WD与数列(后缀数组/后缀自动机+线段树合并)

    https://blog.csdn.net/WAautomaton/article/details/85057257 解法一:后缀数组 显然将原数组差分后答案就是所有不相交不相邻重复子串个数+n*(n ...

  5. 模板—字符串—后缀自动机(后缀自动机+线段树合并求right集合)

    模板—字符串—后缀自动机(后缀自动机+线段树合并求right集合) Code: #include <bits/stdc++.h> using namespace std; #define ...

  6. 【BZOJ4556】[TJOI2016&HEOI2016] 字符串(后缀自动机+线段树合并+二分)

    点此看题面 大致题意: 给你一个字符串\(s\),每次问你一个子串\(s[a..b]\)的所有子串和\(s[c..d]\)的最长公共前缀. 二分 首先我们可以发现一个简单性质,即要求最长公共前缀,则我 ...

  7. bzoj5417/luoguP4770 [NOI2018]你的名字(后缀自动机+线段树合并)

    bzoj5417/luoguP4770 [NOI2018]你的名字(后缀自动机+线段树合并) bzoj Luogu 给出一个字符串 $ S $ 及 $ q $ 次询问,每次询问一个字符串 $ T $ ...

  8. BZOJ5417[Noi2018]你的名字——后缀自动机+线段树合并

    题目链接: [Noi2018]你的名字 题目大意:给出一个字符串$S$及$q$次询问,每次询问一个字符串$T$有多少本质不同的子串不是$S[l,r]$的子串($S[l,r]$表示$S$串的第$l$个字 ...

  9. CF 666E Forensic Examination——广义后缀自动机+线段树合并

    题目:http://codeforces.com/contest/666/problem/E 对模式串建广义后缀自动机,询问的时候把询问子串对应到广义后缀自动机的节点上,就处理了“区间”询问. 还要处 ...

随机推荐

  1. [译]Intel App Framework 3.0的变化

    App Framework 3.0 原文 IAN M. (Intel) 发布于 2015-02-11  05:24 我们高兴地宣布App Framework 的新版本3.0发布了.你可以获得最新的代码 ...

  2. 【转帖】Linux发行版:CentOS、Ubuntu、RedHat、Android、Tizen、MeeGo

     Linux发行版:CentOS.Ubuntu.RedHat.Android.Tizen.MeeGo作者:阳光岛主 原文在这儿 Linux,最早由Linus Benedict Torvalds在199 ...

  3. 安卓开发笔记——打造万能适配器(Adapter)

    为什么要打造万能适配器? 在安卓开发中,用到ListView和GridView的地方实在是太多了,系统默认给我们提供的适配器(ArrayAdapter,SimpleAdapter)经常不能满足我们的需 ...

  4. GCT之数学公式(三角函数)

  5. js简单Base64编码解码

    var str = 'javascript'; window.btoa(str) //转码结果 "amF2YXNjcmlwdA==" window.atob("amF2Y ...

  6. https://www.cnblogs.com/zy-jiayou/p/7661415.html

    Maven常用命令 1.1.Maven 参数 -D 传入属性参数 -P 使用pom中指定的配置 -e 显示maven运行出错的信息 -o 离线执行命令,即不去远程仓库更新包 -X 显示maven允许的 ...

  7. NPOI把Excel导入到数据库

    二,把Excel中的数据导入到数据库的具体步骤: protected void Button1_Click(object sender, EventArgs e)        {           ...

  8. Tomcat------启动时报错:Failed to start component [StandardEngine[Catalina].StandardHost[localhost].

    启动报错信息: Failed to start component [StandardEngine[Catalina].StandardHost[localhost] 因此出现这种错误的原因可能有: ...

  9. logback -- 配置详解 -- 二 -- <appender>

    附: logback.xml实例 logback -- 配置详解 -- 一 -- <configuration>及子节点 logback -- 配置详解 -- 二 -- <appen ...

  10. ios开发之--VC的生命周期

    当一个视图控制器被创建,并在屏幕上显示的时候. 代码的执行顺序 1. alloc                                   创建对象,分配空间 2.init (initWit ...