常见算法(logistic回归,随机森林,GBDT和xgboost)

9.25r早上面网易数据挖掘工程师岗位,第一次面数据挖掘的岗位,只想着能够去多准备一些,体验面这个岗位的感觉,虽然最好心有不甘告终,不过继续加油。

不过总的来看,面试前有准备永远比你没有准备要强好几倍。

因为面试过程看重的不仅是你的实习经历多久怎样,更多的是看重你对基础知识的掌握(即学习能力和逻辑),实际项目中解决问题的能力(做了什么贡献)。


先提一下奥卡姆剃刀:给定两个具有相同泛化误差的模型,较简单的模型比较复杂的模型更可取。以免模型过于复杂,出现过拟合的问题。

如果你想面数据挖掘岗必须先了解下面这部分的基本算法理论:

我们知道,在做数学题的时候,解未知数的方法,是给定自变量和函数,通过函数处理自变量,以获得解。而机器学习就相当于,给定自变量和函数的解,求函数。

类似于:这样:function(x)=y
机器学习就是样本中有大量的x(特征量)和y(目标变量)然后求这个function。(了解更多可以看: https://zhuanlan.zhihu.com/p/21340974?refer=mlearn

求函数的方法,基于理论上来说,大部分函数都能找到一个近似的泰勒展开式。而机器学习,就是用数据去拟合这个所谓的“近似的泰勒展开式”。


实际面试时很看重和考察你的理论基础,所以一定一定要重视各个算法推导过程中的细节问题。这里主要介绍:logistic回归,随机森林,GBDT和Adaboost

1.逻辑回归

逻辑回归从统计学的角度看属于非线性回归中的一种,它实际上是一种分类方法,主要用于两分类问题

Regression问题的常规步骤为:
寻找h函数(即假设估计的函数);
构造J函数(损失函数);
想办法使得J函数最小并求得回归参数(θ);
数据拟合问题

1)利用了Logistic函数(或称为Sigmoid函数),函数形式为最常见的

1.png

2)代价函数J
下面的代价函数J之所有前面加上1/m是为了后面”梯度下降求参数θ时更方便“,也即这里不加1/m也可以。

2.png

3.png

4.png

5.png

3)使得J函数最小并求得回归参数(θ)
如何调整θ以使得J(θ)取得最小值有很多方法,比如最小二乘法,梯度下降也是一种,这里介绍一下梯度下降。

梯度下降是最基础的一个优化算法,学习因子就是梯度下降里的学习率,一个参数。

梯度方向表示了函数增长速度最快的方向,那么和它相反的方向就是函数减少速度最快的方向了。对于机器学习模型优化的问题,当我们需要求解最小值的时候,朝着梯度下降的方向走,就能找到最优值了。

学习因子即步长α的选择对梯度下降算法来说很重要,α过小会导致收敛太慢;若α太大,可能跳过最优,从而找不到最优解。

1)当梯度下降到一定数值后,每次迭代的变化很小,这时可以设定一个阈值,**只要变化小于该阈值,就停止迭代,而得到的结果也近似于最优解。**
2)若损失函数的值不断变大,则有可能是步长速率a太大,导致算法不收敛,这时可适当调整a值 对于样本数量额非常之多的情况,普通的**批量梯度下降**算法(Batch gradient descent )会非常耗时,靠近极小值时收敛速度减慢,因为每次迭代都要便利所有样本,这时可以选择**随机梯度下降算法**(Stochastic gradient descent) 梯度下降**需要把m个样本全部带入计算**,迭代一次计算量为m\\*n^2;随机梯度下降每次只使用一个样本,迭代一次计算量为n^2,当m很大的时候,随机梯度下降迭代一次的速度要远高于梯度下降,虽然不是每次迭代得到的损失函数都向着全局最优方向,** 但是大的整体的方向是向全局最优解的,最终的结果往往是在全局最优解附近。**

6.png

4)数据的拟合问题
第一种是欠拟合,通常是因为特征量选少了。
第二种是我们想要的。
第三个是过拟合,通常是因为特征量选多了。

欠拟合的解决方法是增加特征量。
过拟合的解决方法是减少特征量或者正则化。

但是一般情况下我们又不能确定哪些特征量该去掉,所以我们就选择正则化的方式解决过拟合。

7.png

2.决策树

决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示。单决策树又有一些不好的地方,比如说容易over-fitting

这里首先介绍如何构造决策树
(1)如何分割某一结点,方法有很多,分别针对二元属性、序数属性、连续属性等进行划分。
(2)在有多个特征时,如何确定最佳的分割特征。
这里就涉及到纯度的概念,若分割后的子结点都更偏向于一个类,那么纯度越高。

实际中我们通常对不纯度进行度量,即不纯度越小,则认为该特征的区分度越高。
不纯度的度量方式有三种:

8.png

具体的计算方法如下:

9.png

10.png

上图10中得到多个子结点M1,M2的GINI或者熵后,一般通过加权平均的方法求M12;
那么增益就可以用M0-M12来表示

在决策树算法中,通过比较划分前后的不纯度值,来确定如何分裂。ID3使用信息增益作为不纯度,C4.5使用信息增益比作为不纯度,CART使用基尼指数作为不纯度。

  • 信息增益为:父结点与所有子结点不纯程度的差值,差越大,则增益越大,表示特征的效果越好。
  • 有时候并不是分割的越多越好,如果某个特征产生了大量的划分,它的划分信息将会很大,此时采用信息增益率

    以ID3为例,使用训练样本建立决策树时,在每一个内部节点依据信息论来评估选择哪一个属性作为分割
    的依据。对于过拟合的问题,一般要对决策树进行剪枝,剪枝有两种方法:先剪枝,后剪枝。 先剪枝说白了就是提前结束决策树的增长,跟上述决策树停止生长的方法一样。
    后剪枝是指在决策树生长完成之后再进行剪枝的过程。

(3)何时停止划分。

11.png

3.随机森林

随机森林是一个包含多个决策树的分类器,构建过程如下:
1)决策树相当于一个大师,通过自己在数据集中学到的知识对于新的数据进行分类。但是俗话说得好,一个诸葛亮,玩不过三个臭皮匠。随机森林就是希望构建多个臭皮匠,希望最终的分类效果能够超过单个大师的一种算法。

2)那随机森林具体如何构建呢?有两个方面:数据的随机性选取,以及待选特征的随机选取。

  • 数据的随机选取:
    第一,从原始的数据集中采取有放回的抽样,构造子数据集,子数据集的数据量是和原始数据集相同的。不同子数据集的元素可以重复,同一个子数据集中的元素也可以重复。
    第二,利用子数据集来构建子决策树,将这个数据放到每个子决策树中,每个子决策树输出一个结果。最后,如果有了新的数据需要通过随机森林得到分类结果,就可以通过对子决策树的判断结果的投票,得到随机森林的输出结果了。如下图,假设随机森林中有3棵子决策树,2棵子树的分类结果是A类,1棵子树的分类结果是B类,那么随机森林的分类结果就是A类。

12.png
  • 待选特征的随机选取:
    与数据集的随机选取类似,随机森林中的子树的每一个分裂过程并未用到所有的待选特征,而是从所有的待选特征中随机选取一定的特征,之后再在随机选取的特征中选取最优的特征。这样能够使得随机森林中的决策树都能够彼此不同,提升系统的多样性,从而提升分类性能。

此外,以决策树为基函数的提升方法称为提升树(boosting tree),包括GBDT,xgboost,adaboost,这里只主要介绍GBDT和xgboost。

先说说bootstrap, bagging,boosting 的含义。
Bootstrap是一种有放回的抽样方法思想。

该思想的应用有两方面:bagging和boosting
虽然都是有放回的抽样,但二者的区别在于:Bagging采用有放回的均匀取样,而Boosting根据错误率来取样(Boosting初始化时对每一个训练例赋相等的权重1/n,然后用该学算法对训练集训练t轮,每次训练后,对训练失败的训练例赋以较大的权重),因此Boosting的分类精度要优于Bagging。Bagging的训练集的选择是随机的,各轮训练集之间相互独立,而Boostlng的各轮训练集的选择与前面各轮的学习结果有关。

4.GBDT(Gradient Boost Decision Tree 梯度提升决策树)

GBDT是以决策树(CART)为基学习器的GB算法,是迭代树,而不是分类树。
Boost是"提升"的意思,一般Boosting算法都是一个迭代的过程,每一次新的训练都是为了改进上一次的结果。

GBDT的核心就在于:每一棵树学的是之前所有树结论和的残差,这个残差就是一个加预测值后能得真实值的累加量。比如A的真实年龄是18岁,但第一棵树的预测年龄是12岁,差了6岁,即残差为6岁。那么在第二棵树里我们把A的年龄设为6岁去学习,如果第二棵树真的能把A分到6岁的叶子节点,那累加两棵树的结论就是A的真实年龄;如果第二棵树的结论是5岁,则A仍然存在1岁的残差,第三棵树里A的年龄就变成1岁,继续学习。

13.png

14.png

5.xgboost

xgboos也是以(CART)为基学习器的GB算法**,但是扩展和改进了GDBT。相比GBDT的优点有:

(1)xgboost在代价函数里自带加入了正则项,用于控制模型的复杂度。

(2)xgboost在进行节点的分裂时,支持各个特征多线程进行增益计算,因此算法更快,准确率也相对高一些。

作者:是蓝先生
链接:http://www.jianshu.com/p/d2109fcd8a2e
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

常见算法(logistic回归,随机森林,GBDT和xgboost)的更多相关文章

  1. 机器学习:集成学习:随机森林.GBDT

    集成学习(Ensemble Learning) 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测 ...

  2. 机器学习 —— 决策树及其集成算法(Bagging、随机森林、Boosting)

    本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 决策树--------------------------------------------- ...

  3. 随机森林RF、XGBoost、GBDT和LightGBM的原理和区别

    目录 1.基本知识点介绍 2.各个算法原理 2.1 随机森林 -- RandomForest 2.2 XGBoost算法 2.3 GBDT算法(Gradient Boosting Decision T ...

  4. 【机器学习】分类算法——Logistic回归

    一.LR分类器(Logistic Regression Classifier) 在分类情形下,经过学习后的LR分类器是一组权值w0,w1, -, wn,当测试样本的数据输入时,这组权值与测试数据按照线 ...

  5. 机器学习算法-logistic回归算法

    Logistic回归算法调试 一.算法原理 Logistic回归算法是一种优化算法,主要用用于只有两种标签的分类问题.其原理为对一些数据点用一条直线去拟合,对数据集进行划分.从广义上来讲这也是一种多元 ...

  6. 跟我学算法-Logistic回归

    虽然Logistic回归叫回归,但是其实它是一个二分类或者多分类问题 这里的话我们使用信用诈骗的数据进行分析 第一步:导入数据,Amount的数值较大,后续将进行(-1,1)的归一化 data = p ...

  7. 机器学习中的算法(1)-决策树模型组合之随机森林与GBDT

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  8. 机器学习中的算法——决策树模型组合之随机森林与GBDT

    前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over- ...

  9. 机器学习中的算法-决策树模型组合之随机森林与GBDT

    机器学习中的算法(1)-决策树模型组合之随机森林与GBDT 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使 ...

  10. 机器学习之——集成算法,随机森林,Bootsing,Adaboost,Staking,GBDT,XGboost

    集成学习 集成算法 随机森林(前身是bagging或者随机抽样)(并行算法) 提升算法(Boosting算法) GBDT(迭代决策树) (串行算法) Adaboost (串行算法) Stacking ...

随机推荐

  1. hdu 5821 Ball 贪心

    Ball 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5821 Description ZZX has a sequence of boxes nu ...

  2. request.getRequestDispatcher("").forward()中文乱码

    即使jsp页面的编码已设为“UTF-8”,有中文的地方还是会出现乱码,但是用response.sendRedirect不会出现此问题. 解决方案一: 不使用PrintWriter out=respon ...

  3. c# 实现获取汉字十六进制Unicode编码字符串

    1.  汉字转十六进制UNICODE编码字符串 /// <summary>        /// ////        /// </summary>        /// & ...

  4. github入门教程:第一步

    [git教程] 以前在网上找过一些,见 http://www.wojilu.com/Forum1/Topic/702  我自己会一边学,一边写教程,过程中有不明白的,会跟大家请教交流.   ----- ...

  5. PE Header and Export Table for Delphi

    Malware Analysis Tutorial 8: PE Header and Export Table 2. Background Information of PE HeaderAny bi ...

  6. 【Go命令教程】2. go build

    go build 命令用于编译我们 指定的  源码文件 或 代码包 以及它们的依赖包. 例如,如果我们在执行 go build 命令时不后跟任何代码包,那么命令将试图编译当前目录所对应的代码包.例如, ...

  7. 为在Windows Azure上的网站配置自定义域名

    本篇体验给Windows Azure上的网站自定义域名,首先"CNAME"和"A记录"是必须了解的概念. 假设,在Windows Azure上的网站域名是:x. ...

  8. Android:活动的简单使用

    2.1    活动是什么 活动(Activity)是最容易吸引到用户的地方了,它是一种可以包含用户界面的组件, 主要用于和用户进行交互.一个应用程序中可以包含零个或多个活动,但不包含任何活动的 应用程 ...

  9. PostgreSQL学习手册(目录)

    原文地址:http://www.cnblogs.com/stephen-liu74/archive/2012/06/08/2315679.html 事实上之前有很长一段时间都在纠结是否有必要好好学习它 ...

  10. Web安全测试漏洞场景

    HTTP.sys 远程代码执行   测试类型: 基础结构测试   威胁分类: 操作系统命令   原因: 未安装第三方产品的最新补丁或最新修订程序   安全性风险: 可能会在 Web 服务器上运行远程命 ...