【cs229-Lecture2】Gradient Descent 最小二乘回归问题解析表达式推导过程及实现源码(无需迭代)
视频地址:http://v.163.com/movie/2008/1/B/O/M6SGF6VB4_M6SGHJ9BO.html
机器学习课程的所有讲义及课后作业:http://pan.baidu.com/s/1i3xcljJ
视频前半部分讲了梯度下降算法的迭代过程求的局部最小值,后半部分介绍了利用数学方法给出参数向量的解析表达式,从而求出参数的值,也就是一种无需迭代的方法。
由于PC上编辑不太方便,以下推导过程我会尽可能详细地呈现在草稿纸上,其实视频中AndrewNg已经讲解的很详细了,其实我也只是在看了推导过程之后,自己完全独立地推导了一遍,毕竟自己亲自有动笔了,印象自然深刻。如有不对之处,请指正。
我觉得,当我们表示出J(θ)的表达式后,就已经可以把问题转化为多元函数的极值问题了,因此,也就出现了下面中要求偏导数,以及要设偏导数为0的步骤。而这里之所以会涉及到线代的知识,是因为线代可以用来简化运算,矩阵的表示的优雅。
1、定义新符号;
2、给出5个定理;
3、把问题转化为数学计算;
说明:m代表数据量(即有多少行数据);n代表特征个数(从x0~xn,其中x0恒等于1)
1、定义新符号:
2、给出5个定理;
3、把问题转化为数学计算;
noIteration.java(导入jama包)
package noIteration; import java.io.IOException;
import java.util.List; import Jama.Matrix; public class noIteration{ public static List<Data> DS;
public static int m; public static double[][] initX(){
double[][] x =new double[m][2];
int m=DS.size();
for(int i=0;i<m;i++){
x[i][0]=DS.get(i).x[0];
x[i][1]=DS.get(i).x[1];
}
return x;
} public static double[][] initY(){
double[][] y = new double[m][1];
int m=DS.size();
for(int i=0;i<m;i++){
y[i][0]=DS.get(i).y;
}
return y;
} public static void main(String[] args) throws IOException{ DS=new DataSet().ds;
m=DS.size(); double[][] x=initX();
double[][] y=initY();
Matrix mtx=new Matrix(x);
Matrix mty=new Matrix(y);
Matrix mtxT=mtx.transpose();
Matrix ans=(mtxT.times(mtx)).inverse().times(mtxT).times(mty);
for(int i=0;i<2;i++){
System.out.print(" theta ["+i+"] : "+ans.get(i, 0));
}
}
}
总结:这个算式,简直美丽极了!
【cs229-Lecture2】Gradient Descent 最小二乘回归问题解析表达式推导过程及实现源码(无需迭代)的更多相关文章
- 李宏毅机器学习笔记2:Gradient Descent(附带详细的原理推导过程)
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...
- (3)梯度下降法Gradient Descent
梯度下降法 不是一个机器学习算法 是一种基于搜索的最优化方法 作用:最小化一个损失函数 梯度上升法:最大化一个效用函数 举个栗子 直线方程:导数代表斜率 曲线方程:导数代表切线斜率 导数可以代表方向, ...
- CS229 2.深入梯度下降(Gradient Descent)算法
1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 目标是优化J(θ1),得到其最小化,下图中的×为y(i),下面给出TrainS ...
- 线性回归、梯度下降(Linear Regression、Gradient Descent)
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 实例 首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积.卧室数量和房屋的交易价格,如下表: ...
- [Converge] Gradient Descent - Several solvers
solver : {‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’}, default: ‘liblinear’ Algorithm to use in the op ...
- 斯坦福机器学习视频笔记 Week1 Linear Regression and Gradient Descent
最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更 ...
- Gradient Descent 梯度下降法-R实现
梯度下降法: [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 应用:求线性回归方程的系数 目标:最小化损失 ...
- 机器学习-随机梯度下降(Stochastic gradient descent)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- [机器学习] ML重要概念:梯度(Gradient)与梯度下降法(Gradient Descent)
引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等,主要学习资料来自网上的免费课程和一些经典书籍,免费课 ...
随机推荐
- Docker镜像相关
一.中间镜像 通过持续集成工具Jenkins构建Docker镜像并运行容器,采用的是Docker Compose来进行编排构建运行的.但是每次构建完毕以后通过docker images命令查询,可以发 ...
- glsl boom
原理: 1.渲染场景到fbo 2.对fbo进行高斯横向,纵向模糊,到新的fbo 3.对两张图进行叠加 模糊后的 效果就这样 给数据加大 <-vertex-> #version varyin ...
- EasyUI的功能树之扁平化
上篇博客主要介绍了异步加载树的方法,通过前台传给后台一个节点的id值,然后当单击节点加号时,查询并显示其子节点的数据.其实如果不是很大的数据,我们本可以次把树中所有节点都加载上来的.也就是说,我的Ac ...
- 【WP8】ResourceDictionary
WP8中引用资源字典 当我们定义的样式太多的时候,我们可以把样式分别定义在不同的文件中,然后通过 MergedDictionaries 应用到其他资源字典中,看下面Demo 我们可以把样式定义在多个文 ...
- Android 代码自动提示功能
Eclipse for android 实现代码自动提示智能提示功能,介绍 Eclipse for android 编辑器中实现两种主要文件 java 与 xml 代码自动提示功能,解决 eclips ...
- 教你ABBYY FineReader 12添加图像的技巧
ABBYY FineReader 12是一款OCR图片文字识别软件,而且强大的它现在还可使用快速扫描窗口中的快速打开.扫描并保存为图像或任务自动化任务,在没有进行预处理和OCR的ABBYY FineR ...
- yum常用操作
一.yum安装使用: 1.Yum:rpm的前端程序,用来解决软件包相关依赖性,可以在多个库之间定位软件包,up2date的替代工具 2.yum repository:yum repo,存储了众多rpm ...
- 理解linux 块, i节点
https://blog.csdn.net/zdf19/article/details/54424880 https://www.cnblogs.com/hnrainll/archive/2012/0 ...
- liunx(centos7 ) 免密码登录
centos7 1.准备两台机器 如:(A机器) 和 (B机器) A机器 删除(.ssh目录下文件 known_hosts) 2. 对两台机器生成密钥 在 (A机器)上执行命令: [root@iZ ...
- git 使gitnore立即生效
由于之前有些需要过滤的文件已经提交到版本库了,之后再想起来添加时候已经晚了,使用如下方法 Git忽略规则和.gitignore规则不生效的解决办法 Git忽略规则: 在git中如果想忽略掉某个文件 ...