Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。

Floyd-Warshall算法的时间复杂度空间复杂度

原理

Floyd-Warshall算法的原理是动态规划

为从的只以集合中的节点为中间节点的最短路径的长度。

  1. 若最短路径经过点k,则
  2. 若最短路径不经过点k,则

因此,

在实际算法中,为了节约空间,可以直接在原来空间上进行迭代,这样空间可降至二维。(见下面的算法描述)

算法描述

Floyd-Warshall算法的描述如下:

for k ←  to n do
for i ← to n do
for j ← to n do
if (D_{i,k} + D_{k,j} < D_{i,j}) then
D_{i,j} ← D_{i,k} + D_{k,j};

其中表示由点到点的代价,当为 ∞ 表示两点之间没有任何连接。

Floyd-warshall 算法总结

1. 初始化时, 将 dp[i][i] 设置为 0

2. i, j 均从 1 开始遍历

3. 从状态转移方程到代码的实现, 最关键的一步是确定最外层的循环变量是谁, 而最外层的循环变量又是从状态转移方程本身推出. 比如在 Floyd 算法中, 状态转移方程是

当 k 在最短路径上时, dp(i, j, k) = dp(i, k, k-1) + dp(k, j, k-1)

当 k 不在最短路径时, dp(i, j, k) = dp(i, j, k-1)

可以转化为 g(k) = f(k, k-1), 因此应该把 k 作为最外层的循环变量

4. 空间压缩. 在求解 dp(i, j, k) 时, 会用到 dp(i, k, k-1) 和 dp(k, j, k-1) 以及 dp(i, j, k-1). 新生成的数据 dp(i, j, k) j != k 不会被重复利用, 因此可以使用二维空间

Bellmanford 算法

1. 与 Dijsktra 算法的比较. D 是一种贪心算法, 贪心策略为选取未被处理的最短的节点, 理由是该节点有潜力更新某些节点的距离, 使之变得更小, 每次对该节点的出边进行松弛. 而 B 算法简单的对所有的边进行松弛, 可以看出, D 算法进行的运算是 B 算法的子集.  B 算法的优点是不仅可以处理负权边, 还能判断图是否存在负环.

2. 松弛. 松弛实际上是对相邻节点的访问, 第 n 次松弛保证了保证了所有深度为 n 个节点得出了最短路径. 由于图最短路径最深至多是 V-1, 因此 V-1 次松弛即可确定所有点的最短路径

3. 负权环判定. 因为负权环可以无限制的拉低最短路径, 因此在进行第 V 次松弛后, 最短路径值有所减小, 那么可以肯定, 存在负权环

4. 朴素 BellmanFord 算法

procedure BellmanFord(list vertices, list edges, vertex source)
// 该实现读入边和节点的列表,并向两个数组(distance和predecessor)中写入最短路径信息 // 步骤1:初始化图
for each vertex v in vertices:
if v is source then distance[v] :=
else distance[v] := infinity
predecessor[v] := null // 步骤2:重复对每一条边进行松弛操作
for i from to size(vertices)-:
for each edge (u, v) with weight w in edges:
if distance[u] + w < distance[v]:
distance[v] := distance[u] + w
predecessor[v] := u // 步骤3:检查负权环
for each edge (u, v) with weight w in edges:
if distance[u] + w < distance[v]:
error "图包含了负权环"

5. SPFA 优化

SPFA 是 Shorest Path Faster Algorithm 的简写. SPFA 基于一个事实: 松弛有效的操作必然发生在松弛的前导节点成功松弛的节点上.

用一个队列记录松弛过的节点, 可以减少冗余计算, 将复杂度降低到 o(kE)

Begin
initialize-single-source(G,s);
initialize-queue(Q);
enqueue(Q,s);
while not empty(Q) do
begin
u:=dequeue(Q);
for each v∈adj[u] do
begin
tmp:=d[v];
relax(u,v);
if (tmp<>d[v]) and (not v in Q) then
enqueue(Q,v);
end;
end;
End;

Floyd 和 bellman 算法的更多相关文章

  1. 数据结构与算法--最短路径之Bellman算法、SPFA算法

    数据结构与算法--最短路径之Bellman算法.SPFA算法 除了Floyd算法,另外一个使用广泛且可以处理负权边的是Bellman-Ford算法. Bellman-Ford算法 假设某个图有V个顶点 ...

  2. SGU 455 Sequence analysis(Cycle detection,floyd判圈算法)

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=455 Due to the slow 'mod' and 'div' operati ...

  3. 最短路径问题——bellman算法

    关于最短路径问题,最近学了四种方法——bellman算法.邻接表法.dijkstra算法和floyd-warshall算法. 这当中最简单的为bellman算法,通过定义一个边的结构体,存储边的起点. ...

  4. Bellman算法

    Bellman算法 当图有负圈的时候可以用这个判断最短路! [时间复杂度]O(\(nm\)) &代码: #include <bits/stdc++.h> using namespa ...

  5. Floyd最短路算法

    Floyd最短路算法 ----转自啊哈磊[坐在马桶上看算法]算法6:只有五行的Floyd最短路算法 暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计 ...

  6. UVA 11549 CALCULATOR CONUNDRUM(Floyd判圈算法)

    CALCULATOR CONUNDRUM   Alice got a hold of an old calculator that can display n digits. She was bore ...

  7. UVA 11549 Calculator Conundrum (Floyd判圈算法)

    题意:有个老式计算器,每次只能记住一个数字的前n位.现在输入一个整数k,然后反复平方,一直做下去,能得到的最大数是多少.例如,n=1,k=6,那么一次显示:6,3,9,1... 思路:这个题一定会出现 ...

  8. leetcode202(Floyd判圈算法(龟兔赛跑算法))

    Write an algorithm to determine if a number is "happy". 写出一个算法确定一个数是不是快乐数. A happy number ...

  9. 【啊哈!算法】算法6:只有五行的Floyd最短路算法

            暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程.         上图中有 ...

随机推荐

  1. SQL Server创建远程链接服务器

    --使用sp_addlinkedserver增加链接 EXEC sys.sp_addlinkedserver @server='127.0.0.1', --被访问的服务器别名(习惯上直接使用目标服务器 ...

  2. 解决IDEA 中git 无法自动push 提交问题 Push failed: Failed with error: Could not read from remote repository.

    Push failed: Failed with error: Could not read from remote repository.

  3. linux下安装redis并配置

    redis官网上给出了安装步骤,这里做一下总结. 1.Download, extract and compile Redis with: wget http://download.redis.io/r ...

  4. 《C++程序设计教程——给予Visual Studio 2008》读书笔记1,2章

    double *p1;       //p1为指向double型的指针变量 POINT *p2;       //p2为指向POINT型(点类型)的指针变量 int (*p3)[6];     //p ...

  5. 为已经存在的本地项目添加git,以及从远程仓库拉取代码并切换远程分支

    前提:先去gitlab或github网站上创建一个新项目,完毕后记得添加.ignore: 1.打开终端​,cd到已存在项目的目录 ​​​2.输入以下命令行,初始化一个本地仓库: ​git init 3 ...

  6. R语言-分组统计

    分组统计 1.假定有一组成绩数据,要求根据性别进行分组统计: > score    ID   score1 score2 Gender1  101 11.35321    0.9   male2 ...

  7. linux系统Qt实现简单的任务管理器

    继续上次的操作系统课设,这次需要设计一个简单的任务管理器,大部分人选择GTK来实现,我剑走偏锋,使用Qt来完成这个任务. 用户和应用程序可以通过/proc得到系统的信息,并可以改变内核的某些参数.由于 ...

  8. 关于Unity中网格导航与寻路

    寻路思路 1.烘焙出地形数据,导航数据,区分哪些是路径,哪些是障碍物 2.给要寻路的角色添加寻路的组件,加好了以后就会有速度和目的地之类的参数设置 3.只要设置好目的地,角色就会根据烘焙好的地图自己走 ...

  9. 【Python】Centos + gunicorn+flask 报错ImportError: No module named request

    今天用Python去下载图片,用到了 urllib.request,这个是python3的方法.python2 使用的是urllib2 遇到了这么个问题后台报错,ImportError: No mod ...

  10. Python——pyiso8601

    该模块不是Python内建的模块,为Python补充了 ISO 8601 解析——将常见的 ISO 8601 日期字符创转化为 Python 的 datetime 对象. 安装 $ pip insta ...