STM32的GPIO工作原理 | 附电路图详细分析
STM32的GPIO介绍
STM32引脚说明
GPIO是通用输入/输出端口的简称,是STM32可控制的引脚。GPIO的引脚与外部硬件设备连接,可实现与外部通讯、控制外部硬件或者采集外部硬件数据的功能。
STM32F103ZET6芯片为144脚芯片,包括7个通用目的的输入/输出口(GPIO)组,分别为GPIOA、GPIOB、GPIOC、GPIOD、GPIOE、GPIOF、GPIOG,同时每组GPIO口组有16个GPIO口。通常简略称为PAx、PBx、PCx、PDx、PEx、PFx、PGx,其中x为0-15。
STM32的大部分引脚除了当GPIO使用之外,还可以复用位外设功能引脚(比如串口),这部分在【STM32】STM32端口复用和重映射(AFIO辅助功能时钟) 中有详细的介绍。
GPIO基本结构
每个GPIO内部都有这样的一个电路结构,这个结构在本文下面会具体介绍。
这边的电路图稍微提一下:
保护二极管:IO引脚上下两边两个二极管用于防止引脚外部过高、过低的电压输入。当引脚电压高于VDD时,上方的二极管导通;当引脚电压低于VSS时,下方的二极管导通,防止不正常电压引入芯片导致芯片烧毁。但是尽管如此,还是不能直接外接大功率器件,须加大功率及隔离电路驱动,防止烧坏芯片或者外接器件无法正常工作。
P-MOS管和N-MOS管:由P-MOS管和N-MOS管组成的单元电路使得GPIO具有“推挽输出”和“开漏输出”的模式。这里的电路会在下面很详细地分析到。
TTL肖特基触发器:信号经过触发器后,模拟信号转化为0和1的数字信号。但是,当GPIO引脚作为ADC采集电压的输入通道时,用其“模拟输入”功能,此时信号不再经过触发器进行TTL电平转换。ADC外设要采集到的原始的模拟信号。
这里需要注意的是,在查看《STM32中文参考手册V10》中的GPIO的表格时,会看到有“FT”一列,这代表着这个GPIO口时兼容3.3V和5V的;如果没有标注“FT”,就代表着不兼容5V。
STM32的GPIO工作方式
GPIO支持4种输入模式(浮空输入、上拉输入、下拉输入、模拟输入)和4种输出模式(开漏输出、开漏复用输出、推挽输出、推挽复用输出)。同时,GPIO还支持三种最大翻转速度(2MHz、10MHz、50MHz)。
每个I/O口可以自由编程,但I/O口寄存器必须按32位字被访问。
GPIO_Mode_AIN 模拟输入
GPIO_Mode_IN_FLOATING 浮空输入
GPIO_Mode_IPD 下拉输入
GPIO_Mode_IPU 上拉输入
GPIO_Mode_Out_OD 开漏输出
GPIO_Mode_Out_PP 推挽输出
GPIO_Mode_AF_OD 复用开漏输出
GPIO_Mode_AF_PP 复用推挽输出
下面将具体介绍GPIO的这八种工作方式:
浮空输入模式
浮空输入模式下,I/O端口的电平信号直接进入输入数据寄存器。也就是说,I/O的电平状态是不确定的,完全由外部输入决定;如果在该引脚悬空(在无信号输入)的情况下,读取该端口的电平是不确定的。
上拉输入模式
上拉输入模式下,I/O端口的电平信号直接进入输入数据寄存器。但是在I/O端口悬空(在无信号输入)的情况下,输入端的电平可以保持在高电平;并且在I/O端口输入为低电平的时候,输入端的电平也还是低电平。
下拉输入模式
下拉输入模式下,I/O端口的电平信号直接进入输入数据寄存器。但是在I/O端口悬空(在无信号输入)的情况下,输入端的电平可以保持在低电平;并且在I/O端口输入为高电平的时候,输入端的电平也还是高电平。
模拟输入模式
模拟输入模式下,I/O端口的模拟信号(电压信号,而非电平信号)直接模拟输入到片上外设模块,比如ADC模块等等。
开漏输出模式
开漏输出模式下,通过设置位设置/清除寄存器或者输出数据寄存器的值,途经N-MOS管,最终输出到I/O端口。这里要注意N-MOS管,当设置输出的值为高电平的时候,N-MOS管处于关闭状态,此时I/O端口的电平就不会由输出的高低电平决定,而是由I/O端口外部的上拉或者下拉决定;当设置输出的值为低电平的时候,N-MOS管处于开启状态,此时I/O端口的电平就是低电平。同时,I/O端口的电平也可以通过输入电路进行读取;注意,I/O端口的电平不一定是输出的电平。
开漏复用输出模式
开漏复用输出模式,与开漏输出模式很是类似。只是输出的高低电平的来源,不是让CPU直接写输出数据寄存器,取而代之利用片上外设模块的复用功能输出来决定的。
推挽输出模式
推挽输出模式下,通过设置位设置/清除寄存器或者输出数据寄存器的值,途经P-MOS管和N-MOS管,最终输出到I/O端口。这里要注意P-MOS管和N-MOS管,当设置输出的值为高电平的时候,P-MOS管处于开启状态,N-MOS管处于关闭状态,此时I/O端口的电平就由P-MOS管决定:高电平;当设置输出的值为低电平的时候,P-MOS管处于关闭状态,N-MOS管处于开启状态,此时I/O端口的电平就由N-MOS管决定:低电平。同时,I/O端口的电平也可以通过输入电路进行读取;注意,此时I/O端口的电平一定是输出的电平。
推挽复用输出模式
推挽复用输出模式,与推挽输出模式很是类似。只是输出的高低电平的来源,不是让CPU直接写输出数据寄存器,取而代之利用片上外设模块的复用功能输出来决定的。
总结与分析
1、什么是推挽结构和推挽电路?
推挽结构一般是指两个参数相同的三极管或MOS管分别受两互补信号的控制,总是在一个三极管或MOS管导通的时候另一个截止。高低电平由输出电平决定。
推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务。电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级既提高电路的负载能力,又提高开关速度。
2、开漏输出和推挽输出的区别?
开漏输出:只可以输出强低电平,高电平得靠外部电阻拉高。输出端相当于三极管的集电极。适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内);
推挽输出:可以输出强高、低电平,连接数字器件。
关于推挽输出和开漏输出,最后用一幅最简单的图形来概括:
该图中左边的便是推挽输出模式,其中比较器输出高电平时下面的PNP三极管截止,而上面NPN三极管导通,输出电平VS+;当比较器输出低电平时则恰恰相反,PNP三极管导通,输出和地相连,为低电平。右边的则可以理解为开漏输出形式,需要接上拉。
3、在STM32中选用怎样选择I/O模式?
浮空输入_IN_FLOATING ——浮空输入,可以做KEY识别,RX1
带上拉输入_IPU——IO内部上拉电阻输入
带下拉输入_IPD—— IO内部下拉电阻输入
模拟输入_AIN ——应用ADC模拟输入,或者低功耗下省电
开漏输出_OUT_OD ——IO输出0接GND,IO输出1,悬空,需要外接上拉电阻,才能实现输出高电平。当输出为1时,IO口的状态由上拉电阻拉高电平,但由于是开漏输出模式,这样IO口也就可以由外部电路改变为低电平或不变。可以读IO输入电平变化,实现C51的IO双向功能
推挽输出_OUT_PP ——IO输出0-接GND, IO输出1 -接VCC,读输入值是未知的
复用功能的推挽输出_AF_PP ——片内外设功能(I2C的SCL、SDA)
复用功能的开漏输出_AF_OD——片内外设功能(TX1、MOSI、MISO.SCK.SS)
STM32的GPIO工作原理 | 附电路图详细分析的更多相关文章
- springmvc工作原理以及源码分析(基于spring3.1.0)
springmvc是一个基于spring的web框架.本篇文章对它的工作原理以及源码进行深入分析. 一.springmvc请求处理流程 二.springmvc的工作机制 三.springmvc核心源码 ...
- 磁盘工作原理与IO性能分析
最近,在研究如何优化产品设备的磁盘IO性能,需要深入研究磁盘及文件系统原理和工作机制,下面简要总结下关于磁盘方面的东西,下篇文章再分享文件系统的. 机械磁盘结构: 无论哪种机械硬盘,都主要由盘片.磁头 ...
- 11.深入k8s:kubelet工作原理及源码分析
转载请声明出处哦~,本篇文章发布于luozhiyun的博客:https://www.luozhiyun.com 源码版本是1.19 kubelet信息量是很大的,通过我这一篇文章肯定是讲不全的,大家可 ...
- 单片机stm32的5个时钟源的详细分析
众所周知STM32有5个时钟源HSI.HSE.LSI.LSE.PLL,其实他只有四个,因为从上图中可以看到PLL都是由HSI或HSE提供的. 其中,高速时钟(HSE和HSI)提供给芯片主体的主时钟.低 ...
- Java并发包中Semaphore的工作原理、源码分析及使用示例
1. 信号量Semaphore的介绍 我们以一个停车场运作为例来说明信号量的作用.假设停车场只有三个车位,一开始三个车位都是空的.这时如果同时来了三辆车,看门人允许其中它们进入进入,然后放下车拦.以后 ...
- 详解SpringMVC中Controller的方法中参数的工作原理[附带源码分析]
目录 前言 现象 源码分析 HandlerMethodArgumentResolver与HandlerMethodReturnValueHandler接口介绍 HandlerMethodArgumen ...
- 【MVC - 参数原理】详解SpringMVC中Controller的方法中参数的工作原理[附带源码分析]
前言 SpringMVC是目前主流的Web MVC框架之一. 如果有同学对它不熟悉,那么请参考它的入门blog:http://www.cnblogs.com/fangjian0423/p/spring ...
- Android系统Recovery工作原理之使用update.zip升级过程---updater-script脚本语法简介以及执行流程(转)
目前update-script脚本格式是edify,其与amend有何区别,暂不讨论,我们只分析其中主要的语法,以及脚本的流程控制. 一.update-script脚本语法简介: 我们顺着所生成的脚本 ...
- Android系统Recovery工作原理之使用update.zip升级过程分析(九)---updater-script脚本语法简介以及执行流程【转】
本文转载自:http://blog.csdn.net/mu0206mu/article/details/7465603 Android系统Recovery工作原理之使用update.zip ...
随机推荐
- java中Integer常量池
我们先看一个关于Integer的例子 public static void main(String[] args) { // TeODO Auto-generated method stu Integ ...
- C#函数式程序设计之惰性列表工具——迭代器
有效地处理数据时当今程序设计语言和框架的一个任务..NET拥有一个精心构建的集合类系统,它利用迭代器的功能实现对数据的顺序访问. 惰性枚举是一个迭代方法,其核心思想是只在需要的时候才去读取数据.这个思 ...
- 【转载】python计算文件的行数和读取某一行内容的实现方法
一.计算文件的行数 最简单的办法是把文件读入一个大的列表中,然后统计列表的长度.如果文件的路径是以参数的形式filepath传递的,那么只用一行代码就可以完成我们的需求了: count = len(o ...
- critical section的用法
critical section Critical Section: 不论是硬件临界资源,还是软件临界资源,多个进程必须互斥地对它进行访问.每个进程中访问临界资源的那段代码称为临界区(Critical ...
- Alpha冲刺(九)
Information: 队名:彳艮彳亍团队 组长博客:戳我进入 作业博客:班级博客本次作业的链接 Details: 组员1(组长)柯奇豪 过去两天完成了哪些任务 进一步优化代码,结合自己负责的部分修 ...
- Hadoop各个启动流
(0)如果集群是第一次启动,需要格式化namenodehadoop@node1:~$ hdfs namenode –format (1)启动HDFS:hadoop@master:~$ start-df ...
- 不用SQL给打印记录编号
以QUICKREPORT为例 页面设置如下: 其中ID为编号. 设置为表的ID字段. QUICKREPORT所在的FORM添加一个变量: var FprnT6: TFprnT6; Vxh:intege ...
- Linq实战 之 Linq to Sql及Entity Framework操作详解
Linq实战 之 Linq to Sql及Entity Framework操作详解 一:linq to db的框架 1. linq to sql 2. linq to ado.net entity f ...
- java-04流程控制语句
这里先简单介绍几种流程控制语句 包括if/if-else.switch语句 1.三大流程控制结构 所谓流程控制,就是说要控制程序的执行方式,根据不同的情况执行不同的代码,从而得到不同情况下的不同结果. ...
- Verilog MIPS32 CPU(九)-- 顶层文件
`timescale 1ns / 1ps /////////////////////////////////////////////////////////////////////////////// ...