Implementing x / 6 Using Only Bit Manipulations
This is an interesting question from one of the lab assignments in Introduction to Computer Systems, fall 2018 at Peking University.
Problem Description
Given a 32-bit integer \(x\)(in two's complement), implement a C function that returns \(\frac{x}{6}\) using ONLY bit manipulations(operators like ~ ! | ^ & << >> +
). Your function should behave exactly as the C expression x/6
.
Hint: You can use the following formula(Formula 1)
\]
Inspiration
Since division is very slow using hardware, compilers often use optimizations to speed up division. For example, gcc
will replace x/6
with x*171/1024
when x is relatively small, and implement x*171/1024
with shift left and shift right instructions. However, our function must cover all 32-bit two's complement integers, which means some other techniques are needed to make such replacement possible.
Resolution
We can change Formula 1 into the following form:
\]
Thus we can calculate this(Formula 2)
\]
Which can be implmented using a combination of shift-right and add operations(note that you must program carefully to avoid overflows). However, errors occur since expressions like x>>y
return \(\lfloor x/2^y \rfloor\). We can counter the error by this(Formula 3)
\]
Since errors introduced by shift-rights will only cause \(p\) to be smaller than \(\frac{x}{6}\), we can deduce that \(x-6p > 0\). You can then approximate an upper bound of \(x-6p\), which depends on your implementation of Formula 2.
Suppose that \(x-6p < M\)(where M is small), then we can approximate \(\frac{1}{6}\) in Formula 3 using some \(X \approx \frac{1}{6}\) while keeping the equation true
\]
Choose a proper \(X = a/2^b\), and we are done!
/*
* divSix - calculate x / 6 without using /
* Example: divSix(6) = 1,
* divSix(2147483647) = 357913941,
* Legal ops: ~ ! | ^ & << >> +
* Max ops: 40
* Rating: 4
*/
int divSix(int x) {
int p;
int q,y,t;
x=x+(x>>31&5);
p=x>>3;
p=p+(p>>2);
p=p+(p>>4);
p=p+(p>>8);
p=p+(p>>16);
q=~p+1;
t=x+(q<<1)+(q<<2);
t=t+(t<<1)+(t<<3);
return p+(t>>6);
}
Implementing x / 6 Using Only Bit Manipulations的更多相关文章
- java.lang.IncompatibleClassChangeError: Implementing class的解决办法,折腾了一天总算解决了
一,问题产生背景 git更新代码重启服务器后,问题就莫名奇妙的产生了,一看报错信息,基本看不懂,然后上百度去查,基本都是说jar包冲突,于是把矛头指向maven 二,问题的解决过程 既然确定了是mav ...
- Implementing Navigation with UINavigationController
Implementing Navigation with UINavigationController Problem You would like to allow your users to mo ...
- Implementing SQL Server Row and Cell Level Security
Problem I have SQL Server databases with top secret, secret and unclassified data. How can we estab ...
- ios警告:Category is implementing a method which will also be implemented by its primary class 引发的相关处理
今天在处理项目中相关警告的时候发现了很多问题,包括各种第三方库中的警告,以及各种乱七八糟的问题 先说说标题中的问题 Category is implementing a method which ...
- Hadoop on Mac with IntelliJ IDEA - 3 解决MRUnit - No applicable class implementing Serialization问题
本文讲述在IntelliJ IDEA中使用MRUnit 1.0.0测试Mapper派生类时因MapDriver.withInput(final K1 key, final V1 val)的key参数被 ...
- Implementing the skip list data structure in java --reference
reference:http://www.mathcs.emory.edu/~cheung/Courses/323/Syllabus/Map/skip-list-impl.html The link ...
- The JSR-133 Cookbook for Compiler Writers(an unofficial guide to implementing the new JMM)
The JSR-133 Cookbook for Compiler Writers by Doug Lea, with help from members of the JMM mailing lis ...
- RH253读书笔记(6)-Lab 6 Implementing Web(HTTP) Services
Lab 6 Implementing Web(HTTP) Services Goal: To implement a Web(HTTP) server with a virtual host and ...
- Implementing HTTPS Everywhere in ASP.Net MVC application.
Implementing HTTPS Everywhere in ASP.Net MVC application. HTTPS everywhere is a common theme of the ...
随机推荐
- C11构造函数的改善
1.委托构造函数 委托构造函数就是允许在同一个类中一个构造函数可以调用另一个构造函数,从而在初始化时简化变量的初始化. class CTest { public: int x; int y; int ...
- 前端开发进阶:推荐的 CSS 书写规范
写了这么久的CSS,但大部分前端er都没有按照良好的CSS书写规范来写CSS代码,这样会影响代码的阅读体验,这里总结一个CSS书写规范.CSS书写顺序供大家参考,这些是参考了国外一些文章以及我的个人经 ...
- 母版页 VS shtml—ASP.NET细枝末节(3)
这算是html的重用吧? 网页很多地方长得一样,也有不一样的地方. 把网页中一样的地方,提取出来,形成一个文档. 在其他网页中引用,是网站开发的一个传统的思维. 当然不同的技术有不同的表现形式. 例如 ...
- 51Nod 1256 扩展欧几里得求乘法逆元
给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的. Input 输入2个数M, N中间用 ...
- Hadoop笔记之搭建环境
Hadoop的环境搭建分为单机模式.伪分布式模式.完全分布式模式. 因为我的本本比较挫,所以就使用伪分布式模式. 安装JDK 一般Linux自带的Java运行环境都是Open JDK,我们到官网下载O ...
- WordPress的SEO插件——WordPress SEO by yoast安装及使用
插件:WordPress SEO by yoast 使用方法: 做好网站SEO一直是站长们的愿望,说简单也简单,但是说难也难,因为需要注意的地方太多,一个不小心被百度K了你都不知道怎么回事.这里和大家 ...
- java检验银行卡号
/* 校验过程: 1.从卡号最后一位数字开始,逆向将奇数位(1.3.5等等)相加. 2.从卡号最后一位数字开始,逆向将偶数位数字,先乘以2(如果乘积为两位数,将个位十位数字相加,即将其减去9),再求和 ...
- struts2的action类详解
Action类的书写方式 方式1
- 大数据系列之Flume+kafka 整合
相关文章: 大数据系列之Kafka安装 大数据系列之Flume--几种不同的Sources 大数据系列之Flume+HDFS 关于Flume 的 一些核心概念: 组件名称 功能介绍 Agent ...
- 2017 SWERC
2017 SWERC A:Cakey McCakeFace 题目描述:有一个炉每次只能放一个蛋糕,炉的进口和出口各放了一个探测器,当放蛋糕进去时,进口的探测器会记录时刻,当蛋糕做好后,蛋糕从出口出来, ...