题目链接

戳我

\(Solution\)

应为我们可以将任意一个数列加上一个非负整数,即可以变为将一个数列加上一个整数(可以为负),我们将这个整数设为\(z\).所以要求的式子的变为:

\[\sum_{i=1}^{n}(x_i-y_i+z)^2
\]

首先来化简一下式子

\[\sum_{i=1}^{n}(x_i-y_i+z)^2
\]

\[\sum_{i=1}^{n}x_i^2+\sum_{i=1}^{n}y_i^2+\sum_{i=1}^{n}z_i^2+2z\sum_{i=1}^{n}(x_i-y_i)-2\sum_{i=1}^{n}x_i*y_i
\]

我们可以发现不管如何变化\(\sum_{i=1}^{n}x_i^2+\sum_{i=1}^{n}y_i^2\)的值都不会变.

然后再看看\(\sum_{i=1}^{n}z_i^2+2z\sum_{i=1}^{n}(x_i-y_i)\)显然这是一个关于\(z\)的二次函数.最小值可以\(O(1)\)算出但是注意一下\(z\)必须是整数而且可以为负,所以需要将\(-\frac{x_i-y_i}{n}\)向上和向下取整并带入式子取最小值.

所以我们现在只需要算出\(2\sum_{i=1}^{n}x_i*y_i\)的最大值即可.

这个如何去算,将\(y\)变成链,在进行一次\(fft\)在取一个最大值就好了

\(Code\)

#include<bits/stdc++.h>
#define int long long
#define rg register
#define file(x) freopen(x".in","r",stdin);freopen(x".out","w",stdout);
using namespace std;
int read(){
int x=0,f=1;
char c=getchar();
while(c<'0'||c>'9') f=(c=='-')?-1:1,c=getchar();
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return f*x;
}
const int N=3000001;
const double pi=3.14159265358979323846;
struct node {
double x,y;
node operator + (node z)const {
return (node){x+z.x,y+z.y};
}
node operator - (node z)const {
return (node){x-z.x,y-z.y};
}
node operator * (node z)const {
return (node){x*z.x-y*z.y,y*z.x+x*z.y};
}
}f[N],g[N];
int r[N],limit=1;
void fft(node *a,int opt){
for(int i=0;i<=limit;i++)
if(i<r[i])
swap(a[i],a[r[i]]);
for(int i=1;i<limit;i<<=1){
node w=(node){cos(pi/i),opt*sin(pi/i)};
for(int j=0;j<limit;j+=i<<1){
node l=(node){1,0};
for(int k=j;k<j+i;k++){
node p=l*a[k+i];
a[k+i]=a[k]-p;
a[k]=a[k]+p;
l=l*w;
}
}
}
}
int a[N],b[N];
main(){
int n=read(),k=read(),l=0,m=n,js=0,ans=0;
for(int i=1;i<=n;i++)
a[i]=f[i].x=read(),f[i+n].x=f[i].x,js+=a[i],ans+=a[i]*a[i];
for(int i=1;i<=n;i++)
b[i]=read(),js-=b[i],ans+=b[i]*b[i];
reverse(b+1,b+n+1);
for(int i=1;i<=n;i++)
g[i].x=b[i];
int A=-floor(js*1.0/n),B=-ceil(js*1.0/n);
ans+=min(A*A*n+2*A*js,B*B*n+2*B*js);
n*=2;
while(limit<=n+m)
limit<<=1,l++;
for(int i=0;i<limit;i++)
r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
fft(f,1),fft(g,1);
for(int i=0;i<=limit;i++)
f[i]=f[i]*g[i];
fft(f,-1);
int maxx=0;
for(int i=m;i<=n+1;i++)
maxx=max((int)(f[i].x/limit+0.5),maxx);
printf("%lld",ans-2*maxx);
}

「AH2017/HNOI2017」礼物的更多相关文章

  1. loj#2020 「AHOI / HNOI2017」礼物 ntt

    loj#2020 「AHOI / HNOI2017」礼物 链接 bzoj没\(letex\),差评 loj luogu 思路 最小化\(\sum\limits_1^n(a_i-b_i)^2\) 设改变 ...

  2. 「AHOI / HNOI2017」礼物

    「AHOI / HNOI2017」礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰 ...

  3. loj#2020. 「AHOI / HNOI2017」礼物

    题意:给定xy数组求 \(\sum_{i=0}^{n-1}(x_i+y_{(i+k)\modn}+c)^2\) 题解:先化简可得 \(n*c^2+2*\sum_{i=0}^{n-1}x_i-y_i+\ ...

  4. AC日记——「HNOI2017」礼物 LiBreOJ 2020

    #2020. 「HNOI2017」礼物 思路: A题进程: 一眼出式子->各种超时过不去->看题解明白还有fft这个东西->百度文库学习fft->学习dft->学习fft ...

  5. 「AHOI / HNOI2017」单旋

    「AHOI / HNOI2017」单旋 题目链接 H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据结构,因为代码好写,功能多,效率高,掌握这种 ...

  6. 「AHOI / HNOI2017」影魔

    「AHOI / HNOI2017」影魔 题目描述 解决这类比较复杂的区间贡献问题关键在于找到计算的对象. 比如这道题,我们计算的对象就是区间中间的最大值. 对于点\(i\),我们找到左边第一个比他大的 ...

  7. loj #2023. 「AHOI / HNOI2017」抛硬币

    #2023. 「AHOI / HNOI2017」抛硬币   题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个 ...

  8. loj #2021. 「AHOI / HNOI2017」大佬

    #2021. 「AHOI / HNOI2017」大佬   题目描述 人们总是难免会碰到大佬.他们趾高气昂地谈论凡人不能理解的算法和数据结构,走到任何一个地方,大佬的气场就能让周围的人吓得瑟瑟发抖,不敢 ...

  9. [LOJ 2022]「AHOI / HNOI2017」队长快跑

    [LOJ 2022]「AHOI / HNOI2017」队长快跑 链接 链接 题解 不难看出,除了影响到起点和终点的射线以外,射线的角度没有意义,因为如果一定要从该射线的射出一侧过去,必然会撞到射线 因 ...

随机推荐

  1. ResultMap详解

    MyBatis:ResultMap详解   一.前言   MyBatis是基于“数据库结构不可控”的思想建立的,也就是我们希望数据库遵循第三范式或BCNF,但实际事与愿违,那么结果集映射就是MyBat ...

  2. Sqlserver2005中的varchar,varchar,char,nchar的比较

    C#窗体中的TextBox 的MaxLength:与Nvarchar类似,不论是什么,最多只能为2.我我11我1

  3. Java Socket编程之TCP

    基于TCP的Socket通信: 服务器端: 创建一个服务器端Socket,即ServerSocket,指定绑定的端口,并监听此端口 调用accept()方法开始监听,等待客户端的连接 连接建立后,通过 ...

  4. poj2796 Feel good

    题目给出N个数,找出一段区间使得区间最小值乘区间和的值最大 其中N<=100000 分析: 单调队列(单调栈) 求出每个值作为最小值时最长的影响区间,然后枚举判断 这找出最长影响区间应该算是单调 ...

  5. 32. Longest Valid Parentheses (Stack; DP)

    Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...

  6. C++ split

    /*************************************************Function: splitDescription: 根据空格切分字符串Calls: // 被本函 ...

  7. 浅谈Java中set.map.List的区别

    就学习经验,浅谈Java中的Set,List,Map的区别,对JAVA的集合的理解是想对于数组: 数组是大小固定的,并且同一个数组只能存放类型一样的数据(基本类型/引用类型),JAVA集合可以存储和操 ...

  8. C 和 CPP 混合代码cmath编译出错

    Visual Studio会将cmath内的一些列函数报错 解决方式:项目->属性->配置属性->C/C++ ->高级->编译为->选择编译为C++代码即可

  9. 初学者教程之命名空间,范围解析及LEDB规则

    2014年5月12日 Sebastian Raschka编写 这是一篇关于采用LEGB规则实现Python变量命名空间及范围解析的简短教程.下面章节将会提供简短的可以说明问题的示例代码块来简要阐述问题 ...

  10. Reading——简约至上

    读书感言: 简约至上——Giles Colborne,我去,这是哪里来的渣书,通篇都是泛泛而谈,实在受不鸟了> <,没学到啥实质性的东西,论述一大堆.!!!还姐的20多块钱.最讨厌这样的书 ...