来源:http://blog.csdn.net/ice_actor/article/details/78603042

1.什么是人脸识别

  这部分演示了百度总部大楼的人脸识别系统,员工刷脸进出办公区,在这个演示中主要应用到了人脸识别技术和活体检测。 人脸识别的术语: 1)face verification:输入图像、名字ID判断输入图像是不是名字ID指定的用户 2)face recognition:有一个包含K个用户的数据库,拿到一幅图片,然后判断图片中的人是不是在数据库中,在输出指定用户name,不在就输出未识别。   人脸识别要比人脸验证要困难的多,在人脸验证中准确率99%也许可以接受,但是放到包含100个用户的人脸识别数据集下,这个误差就会被放大,意味着1%的概率会出错。在后续我们首先构建人脸验证系统作为基本模块,如果准确率够高就可以把它用在识别系统上。人脸验证系统的难点在于解决one-shot learning(一次学习)问题。

2. one-shot learning

  one-shot的意思是你需要通过单单一张图片,就能去识别这个人,但是在深度学习中只有一个训练样本时,它的表现并不好,那么如何去解决这个问题呢?   假如员工数据库有四个员工,当某个员工来的时候,你想通过人脸识别系统判断他是不是四个员工之一,系统需要做的是仅仅通过一张照片,来识别前面这个人。所以在one-shot学习问题中只能通过一个样本来进行学习以能够认出同一个人,大多数人脸识别系统都要解决这个问题,因为在你的数据库中每个雇员可能都只有一张照片。有一种办法是将人的照片输入卷积神经网络,使用softmax单元输出5个标签,分别对应四个员工和四个都不是,但是这样的效果并不好,假如有新的员工加入你的团队,你就需要重新训练你的神经网络,这个确实有些糟糕。

要让人脸识别做到一次学习,为了能有更好的效果,你需要做的是学习similarity函数,详细的说就是下图中d表示的函数,d以两张图片作为输入,然后输出这两张图片的差异值,如果是同一个人的两张照片,希望输出一个很小的值,如果是两个差异很大的人的照片d输出一个很大的值。这样新加入一个员工只许将其的照片加入到数据库中即可,不需要重新训练模型。

3.Siamese网络

  Siamese网络就是实现上节函数d的训练,你经常会看到如下的网络结构,输入一个图像经过一系列的卷积、池化和全连接层最终得到一个特征向量,有时候会将其输入softmax单元来做分类,但是在这里我们不需要将其输入softmax单元。加入输出的特征向量大小是128维,将其命名为f(x),你可以将其看成输入图像的编码。

从上面的描述可知,计算两个图片的网络结构有着同样的参数,所以实际只需要训练一个网络,它计算得到的编码可以用于计算函数d,换句话说其实就是神经网络的参数定义了一个编码函数f(x)可以将图片转换成向量编码。所以我们需要做的就是训练这个网络,使其在两张图片是同一个人的时候距离函数尽可能的小,不是同一个人的时候距离函数尽可能的大。

详细内容请参考上述原文!

人脸识别如何做到one-shot learning?(转)的更多相关文章

  1. [DeeplearningAI笔记]卷积神经网络4.1-4.5 人脸识别/one-shot learning/Siamase网络/Triplet损失/将面部识别转化为二分类问题

    4.4特殊应用:人脸识别和神经网络风格转换 觉得有用的话,欢迎一起讨论相互学习~Follow Me 4.1什么是人脸识别 Face verification人脸验证 VS face recogniti ...

  2. 论文阅读:Face Recognition: From Traditional to Deep Learning Methods 《人脸识别综述:从传统方法到深度学习》

     论文阅读:Face Recognition: From Traditional to Deep Learning Methods  <人脸识别综述:从传统方法到深度学习>     一.引 ...

  3. 深度挖坑:从数据角度看人脸识别中Feature Normalization,Weight Normalization以及Triplet的作用

    深度挖坑:从数据角度看人脸识别中Feature Normalization,Weight Normalization以及Triplet的作用 周翼南 北京大学 工学硕士 373 人赞同了该文章 基于深 ...

  4. 人脸识别必读的N篇文章

    一,人脸检测/跟踪 人脸检测/跟踪的目的是在图像/视频中找到各个人脸所在的位置和大小:对于跟踪而言,还需要确定帧间不同人脸间的对应关系. 1, Robust Real-time Object Dete ...

  5. DeepID人脸识别算法之三代(转)

    DeepID人脸识别算法之三代 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/42091205 DeepID,目前最强人脸识别算法,已经三 ...

  6. Python 3 利用 Dlib 19.7 实现摄像头人脸识别

    0.引言 利用python开发,借助Dlib库捕获摄像头中的人脸,提取人脸特征,通过计算欧氏距离来和预存的人脸特征进行对比,达到人脸识别的目的: 可以自动从摄像头中抠取人脸图片存储到本地: 根据抠取的 ...

  7. 第三十七节、人脸检测MTCNN和人脸识别Facenet(附源码)

    在说到人脸检测我们首先会想到利用Harr特征提取和Adaboost分类器进行人脸检测(有兴趣的可以去一看这篇博客第九节.人脸检测之Haar分类器),其检测效果也是不错的,但是目前人脸检测的应用场景逐渐 ...

  8. 学习笔记TF058:人脸识别

    人脸识别,基于人脸部特征信息识别身份的生物识别技术.摄像机.摄像头采集人脸图像或视频流,自动检测.跟踪图像中人脸,做脸部相关技术处理,人脸检测.人脸关键点检测.人脸验证等.<麻省理工科技评论&g ...

  9. 项目总结二:人脸识别项目(Face Recognition for the Happy House)

    一.人脸验证问题(face verification)与人脸识别问题(face recognition) 1.人脸验证问题(face verification):           输入       ...

随机推荐

  1. excel表中判断A列与B列内容是否相同,相同的话在C列按条件输出!

    判断两列数据是否相同,有以下几个函数判断(做笔记于此,方便以后查找): 1.=IF(AND(A4=B4),"相同","") 在C列输出相同字符 2.=IF(A1 ...

  2. Debugger DataSet 调试时查看DataSet

    delphi  跟踪调试的时候查看DataSet数据记录 Ctrl+F7调试 增强工具DataSethttp://edn.embarcadero.com/article/40268 http://do ...

  3. 某客的《微信小程序》从基础到实战视频教程

    第 1 部分 微信小程序从基础到实战课程概要   第 1 节 微信小程序从基础到实战课程概要   1.1微信小程序从基础到实战课程概要   第 2 部分 初识微信小程序    第 1 节 微信小程序简 ...

  4. 【.Net】vs2017 自带发布工具 ClickOnce发布包遇到的问题

    一.遇到的问题 在安装了vs2017 社区版(Community)之后  想打包安装程序(winform) 还是想用之前的 installshield来打包  发现居然打不了,在官网查了    ins ...

  5. jquery中的append功能相当于剪切的作用 将原来的元素剪切走

    jquery中的append功能相当于剪切的作用 将原来的元素剪切走

  6. JAVA里面"=="和euqals的区别

    (1)基本数据类型,用双等号“==”比较,比较的是他们的值,值类型是存储在内存中的栈中 (2)复合数据类型中, 当他们用“==”进行比较的时候,比较的是他们在内存中的存放地址,其变量在栈中仅仅是存储引 ...

  7. 洛谷 P2604 [ZJOI2010]网络扩容 解题报告

    P2604 [ZJOI2010]网络扩容 题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. ...

  8. css样式表设置

    有参考此片博文 1.内联式样式表 是指将CSS样式编码写在HTML标签中,在标签内编写的样式能影响的范围最小,只改变本标签的文字样式,同样的标签不会受到影响,也称行间样式表. 格式如下 <h1 ...

  9. git clone 指定分支的内容

    使用Git下载指定分支命令为:git clone -b 分支名仓库地址 使用Git下载v.2.8.1分支代码,使用命令:git clone -b v2.8.1 https://git.oschina. ...

  10. Kubernetes 1.5部署sonarqube

    前面几篇博文我们一直在说kubernetes的基础环境的安装及部署.在基础环境部署完成以后,我们开始尝试使用kubernetes来管理我们的应用.本篇博文通过一个简单的示例来向大家展示如何通过depl ...