SVMtrain的参数c和g的优化

在svm训练过程中,需要对惩罚参数c和核函数的参数g进行优化,选取最好的参数

知道测试集标签的情况下

是让两个参数c和g在某一范围内取离散值,然后,取测试集分类准确率最佳的参数

不知道测试集标签的情况下

(1)利用交叉验证的方法:(k-fold cross validation)

  1. Start 

  2. bestAccuracy = 0 

  3. bestc = 0 

  4. bestg = 0 


  5. //n1 , n2 ,k都是事先给定的值 

  6. for c = 2^(-n1) : 2^(n1) 

  7. for g = 2^(-n2) : 2^(n2) 

  8. 将训练集平均分为k部分,设为 

  9. train(1),train(2), ... ,train(k). 

  10. 分别让每一部分作为测试集进行预测(剩下的k-1部分作为训练集对分类器进行训练)取得最后得到的所有分类的准确率的平均数,设为cv 

  11. if(cv>bestAccuracy) 

  12. bestAccuracy = cv; bestc = c; bestg = g 

  13. end 

  14. end 

  15. end 

  16. over 

(2)leave-one-out cross validation(loo交叉验证)

设原始数据有N个样本,那么LOO-CVj就是N-CV,即每一个样本作为验证集,其余的N-1个样本作为训练集,所以在LOO-CV下会得到N个模型,用N个模型的最终验证集的分类准确率的平均数做为在LOO-CV下分类器的性能指标

** 但是LOO-cv计算量太大,每个样本都要建立一个模型,计算成本太大

当计算出所有的c和g时,这时候这些c和g有可能会出现的是:某些成对出现的c和g验证准确率一样高,这时候选择的是惩罚参数最小的c和g,认为c小的那个对象是最佳的选择

伪代码如下

bestAccuracy = 0

bestc = 0

bestg = 0

//将c和g划分为网格进行搜索

for c = 2 (cmin):2(cmax)

for c = 2 (gmin):2(gmax)

%%采用K-CV方法

将train大致分为K组,记为train(1)train(2)…train(k)

相应的标签也要分离出来记为train_label(1),train_label(2)…train_label(k)

for run = 1:k

让train(run),作为验证集,其他的作为训练集,记录此时的验证准确率为acc(run)

end

cv = (acc(1)+acc(2)+…acc(k))/k

if (cv>bestAccuracy)

bestAccury = cv;bestc=c;bestg=g;

end

end

end

over

SVMtrain的参数c和g的优化的更多相关文章

  1. Deep Learning.ai学习笔记_第二门课_改善深层神经网络:超参数调试、正则化以及优化

    目录 第一周(深度学习的实践层面) 第二周(优化算法) 第三周(超参数调试.Batch正则化和程序框架) 目标: 如何有效运作神经网络,内容涉及超参数调优,如何构建数据,以及如何确保优化算法快速运行, ...

  2. DeepLearning.ai学习笔记(二)改善深层神经网络:超参数调试、正则化以及优化--Week2优化算法

    1. Mini-batch梯度下降法 介绍 假设我们的数据量非常多,达到了500万以上,那么此时如果按照传统的梯度下降算法,那么训练模型所花费的时间将非常巨大,所以我们对数据做如下处理: 如图所示,我 ...

  3. svmtrain输入参数介绍【转】

    -s svm类型:SVM设置类型(默认0) 0 -- C-SVC 1 --v-SVC 2 – 一类SVM 3 -- e -SVR 4 -- v-SVR -t 核函数类型:核函数设置类型(默认2) 0 ...

  4. gcc/g++ -O 优化选项说明

    查查gcc手册就知道了,每个编译选项都控制着不同的优化选项 下面从网络上copy过来的,真要用到这些还是推荐查阅手册 -O设置一共有五种:-O0.-O1.-O2.-O3和-Os. 除了-O0以外,每一 ...

  5. Andrew Ng - 深度学习工程师 - Part 2. 改善深层神经网络:超参数调试、正则化以及优化(Week 2. 优化算法)

    ===========第2周 优化算法================ ===2.1 Mini-batch 梯度下降=== epoch: 完整地遍历了一遍整个训练集 ===2.2 理解Mini-bat ...

  6. [NOI2009]诗人小G 四边形优化DP

    题目传送门 f[i] = min(f[j] + val(i,j); 其中val(i,j) 满足 四边形dp策略. 代码: #include<bits/stdc++.h> using nam ...

  7. PyTorch官方中文文档:torch.optim 优化器参数

    内容预览: step(closure) 进行单次优化 (参数更新). 参数: closure (callable) –...~ 参数: params (iterable) – 待优化参数的iterab ...

  8. 优化Linux内核参数提高服务器负载能力

    首先,编辑一下/etc/sysctl.conf 文件,调整一下以下参数,如果没有经过优化的Linux内核可能没有这些参数,那么把需要补充的复制添加进去即可,其他设置默认即可,不需要理解. 记得修改完成 ...

  9. linux内核参数注释与优化

    目录 1.linux内核参数注释 2.两种修改内核参数方法 3.内核优化参数生产配置 参数解释由网络上收集整理,常用优化参数对比了网上多个实际应用进行表格化整理,使查看更直观. 学习linux也有不少 ...

随机推荐

  1. jmeter 配置元件之计数器Counter

    用jmeter生成数据 我用过几种以下几种方法 1.CSV Data Set Config  参数化 2.${_Random} ${_Random}是jmeter函数助手里面自带的一个函数,作用是返回 ...

  2. 【数据库】SQL两表之间:根据一个表的字段更新另一个表的字段

    1. 写法轻松,更新效率高:update table1 set field1=table2.field1,field2=table2.field2from table2where table1.id= ...

  3. Spark:一个高效的分布式计算系统--转

    原文地址:http://soft.chinabyte.com/database/431/12914931.shtml 概述 什么是Spark ◆ Spark是UC Berkeley AMP lab所开 ...

  4. bzoj2820-GCD

    题意 \(T\le 10^4\) 次询问 \(n,m\) ,求 \[ \sum _{i=1}^n\sum _{j=1}^m[gcd(i,j)\text { is prime}] \] 分析 这题还是很 ...

  5. bzoj2013[CEOI2010] A huge tower

    题意 有N(2<=N<=620000)快砖,要搭一个N层的塔,要求:如果砖A恰好在砖B上面,那么A不能比B的长度+D要长.问有几种方法,输出 答案 mod 1000000009的值 分析 ...

  6. NoSQL - Redis应用场景

         问题的引入 DB(Oracle.MySQL.Postgresql等)+Memcached 这种架构模式在我们生产环境中十分常见,一般我们通过Memcached将热点数据加载到cache,应用 ...

  7. 【Java】时间转json格式化

     @DateTimeFormat(pattern="yyyy-MM-ddHH:mm:ss")     @JsonFormat(pattern="yyyy-MM-ddHH: ...

  8. (转)slf4j+logback将日志输出到控制台

    因为博主不允许转载...这边做链接记录 http://blog.csdn.net/gsycwh/article/details/52972946

  9. 【NOIP2017】列队(Splay)

    [NOIP2017]列队(Splay) 题面 洛谷 题解 其实好简单啊... 对于每一行维护一棵\(Splay\) 对于最后一列维护一棵\(Splay\) \(Splay\)上一个节点表示一段区间 每 ...

  10. 弄清楚CSS的匹配原理让你写出高效的CSS

    用了这么多年的CSS,现在才明白CSS的真正匹配原理,不知道你是否也跟我一样?看1个简单的CSS: DIV#divBox p span.red{color:red;} 按习惯我们对这个CSS 的理解是 ...