Description

现在有一个长度为\(~n~\)的数列\(~A_1~,~A_2~\dots~A_n~\),\(~Q~\)个询问\(~[l_i~,~r_i]~\),每次询问区间内是否有元素相同

Input

第一行有两个整数\(~N,Q~\),

第二行有\(~n~\)个整数,代表这个序列

以下\(~Q~\)行每行两个整数,代表询问区间

Output

对每个询问输出一行\(~Yes~\)或\(~No~\)。

Hint

\(Forall:\)

\(1~\leq~n~,~Q~\leq~10^5~,~1~\leq~A_i~\leq~N~,~1~\leq~l_i~\leq~r_i~\leq~N\)

Solution

看到这题发现可以用莫队做。然鹅统计区间出现次数平方的题写腻了,而开桶和位向量的做法又很麻烦,于是我就YY了一个更加麻烦的做法。

发现我们可以在莫队维护区间信息的时候维护区间中所有元素出现次数之积。因为乘1等价于没有乘,我们对于没有出现的元素也乘1。这个值在指针移动时是支持修改的:只要在去掉该位置贡献的时候除掉当前的出现次数,然后将这个位置的出现次数\(-1\),再乘回去即可。增加一个位置贡献的方法同理。当询问的区间出现次数积为\(1\)时,即为没有出现重复,否则为出现重复。

但是考虑这么做在极端数据,比如前\(\frac{n}{2}\)个数出现了\(2\)次,后\(\frac{n}{2}\)个数没有出现的时候,积是\(2^{\frac{n}{2}}\)次方,显然存不下。这时考虑NOIP2014解方程,我们只需要对多个形如1******7的大质数取模,当所有取模后的答案都为\(1\)是,我们认为积是\(1\),否则积显然不是\(1\)。

于是先\(O(n)\)筛一下逆元再莫队就好了。

Code

这个代码写的好丑啊……其实可以美化美化然而我懒得写了

#include<cmath>
#include<cstdio>
#include<algorithm>
#ifdef ONLINE_JUDGE
#define puts(o) \
puts("I am a cheater!")
#define freopen(a,b,c)
#endif
#define rg register
#define ci const int
#define cl const long long typedef long long int ll; template <typename T>
inline void qr(T &x) {
rg char ch=getchar(),lst=' ';
while((ch > '9') || (ch < '0')) lst=ch,ch=getchar();
while((ch >= '0') && (ch <= '9')) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst == '-') x=-x;
} namespace IO {
char buf[120];
} template <typename T>
inline void qw(T x,const char aft,const bool pt) {
if(x < 0) {x=-x,putchar('-');}
rg int top=0;
do {IO::buf[++top]=x%10+'0';} while(x/=10);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} const int maxn = 100010;
const int ccnt = 6; int n,q;
int MU[maxn],belong[maxn],bk[maxn];
int inv[8][maxn]; struct Ask {
int l,r,num;
bool ans;
inline bool operator<(const Ask &_others) const {
if(belong[this->l] != belong[_others.l]) return this->l < _others.l;
if(belong[this->l] & 1) return this->r < _others.r;
else return this->r > _others.r;
}
};
Ask ask[maxn]; inline bool cmp(const Ask &_a,const Ask &_b) {
return _a.num < _b.num;
} struct C {
int mod;
int ans;
C(int _x=0) {mod=_x,ans=1;}
};
C CU[8]; void GetInv(ci,ci); int main() {
freopen("1.in","r",stdin);
qr(n);qr(q);
for(rg int i=1;i<=n;++i) qr(MU[i]);
for(rg int i=1,sn=sqrt(n);i<=n;++i) belong[i]=i/sn;
for(rg int i=1;i<=q;++i) {
qr(ask[i].l);qr(ask[i].r);ask[i].num=i;
}
CU[1]=C(1000000007);CU[2]=C(1000000009);CU[3]=C(19260817);CU[4]=C(998244353);CU[5]=C(10000007);
for(int i=1;i<ccnt;++i) GetInv(CU[i].mod,i);
std::sort(ask+1,ask+1+q);
int prel=ask[1].l,prer=ask[1].l-1;
#define jd(o) (bk[MU[o]] > 1)
for(rg int i=1;i<=q;++i) {
int l=ask[i].l,r=ask[i].r;
while(prel < l) {
if(jd(prel)) {
for(rg int j=1;j<ccnt;++j) CU[j].ans=1ll*CU[j].ans*inv[j][bk[MU[prel]]]%CU[j].mod;
}
--bk[MU[prel]];
if(jd(prel)) {
for(rg int j=1;j<ccnt;++j) CU[j].ans=1ll*CU[j].ans*bk[MU[prel]]%CU[j].mod;
}
++prel;
}
while(prel > l) {
--prel;
if(jd(prel)) {
for(rg int j=1;j<ccnt;++j) CU[j].ans=1ll*CU[j].ans*inv[j][bk[MU[prel]]]%CU[j].mod;
}
++bk[MU[prel]];
if(jd(prel)) {
for(rg int j=1;j<ccnt;++j) CU[j].ans=1ll*CU[j].ans*bk[MU[prel]]%CU[j].mod;
}
}
while(prer < r) {
++prer;
if(jd(prer)) {
for(rg int j=1;j<ccnt;++j) CU[j].ans=1ll*CU[j].ans*inv[j][bk[MU[prer]]]%CU[j].mod;
}
++bk[MU[prer]];
if((jd(prer))) {
for(rg int j=1;j<ccnt;++j) CU[j].ans=1ll*CU[j].ans*bk[MU[prer]]%CU[j].mod;
}
}
while(prer > r) {
if(jd(prer)) {
for(rg int j=1;j<ccnt;++j) CU[j].ans=1ll*CU[j].ans*inv[j][bk[MU[prer]]]%CU[j].mod;
}
--bk[MU[prer]];
if(jd(prer)) {
for(rg int j=1;j<ccnt;++j) CU[j].ans=1ll*CU[j].ans*bk[MU[prer]]%CU[j].mod;
}
--prer;
}
bool _ans=true;
for(rg int j=1;j<ccnt;++j) if(CU[j].ans != 1) {
_ans=false;break;
}
ask[i].ans=_ans;
}
#undef jd
std::sort(ask+1,ask+1+q,cmp);
for(rg int i=1;i<=q;++i)
if(ask[i].ans) puts("Yes");
else puts("No");
return 0;
} void GetInv(ci mod,ci cur) {
inv[cur][1]=1;
for(rg int i=2;i<=n;++i) inv[cur][i]=1ll*(mod-mod/i)*inv[cur][mod%i]%mod;
}

Summary

貌似这次没啥好summary的

【莫队】【P3901】 数列找不同的更多相关文章

  1. P3901 数列找不同

    P3901 数列找不同 题目描述 现有数列 \(A_1,A_2,\cdots,A_N\) ,Q 个询问 \((L_i,R_i)\) , \(A_{Li} ,A_{Li+1},\cdots,A_{Ri} ...

  2. Luogu P3901 数列找不同

    由于技术原因,题目我贴不上了,大家点下面的链接自己去看吧^_^ P3901 数列找不同 这题第一眼看去,题面真短,有坑(flag) 在往下面看去,woc数据这么大,你要怎样. 现在一起想想想,超级侦探 ...

  3. 洛谷P3901 数列找不同 [莫队]

    题目传送门 题目描述 现有数列 A_1,A_2,\cdots,A_NA1​,A2​,⋯,AN​ ,Q 个询问 (L_i,R_i)(Li​,Ri​) , A_{Li} ,A_{Li+1},\cdots, ...

  4. 洛谷 P3901 数列找不同(莫队)

    题目链接:https://www.luogu.com.cn/problem/P3901 这道题简单莫队模板题,然后$add$和$del$分别处理$vis[]$从$0-->1$和从$1--> ...

  5. 洛谷P3901 数列找不同(莫队)

    传送门 我不管我不管我就是要用莫队 直接用莫队裸上 //minamoto #include<iostream> #include<cstdio> #include<alg ...

  6. 【刷题】洛谷 P3901 数列找不同

    题目描述 现有数列 \(A_1,A_2,\cdots,A_N\) ,Q 个询问 \((L_i,R_i)\) , \(A_{Li} ,A_{Li+1},\cdots,A_{Ri}\) 是否互不相同 输入 ...

  7. 【题解】Luogu P3901 数列找不同

    我博客中对莫队的详细介绍 原题传送门 不错的莫队练手题 块数就直接取sqrt(n) 对所有询问进行排序 排序第一关键词:l所在第几块,第二关键词:r的位置 考虑Ai不大,暴力开数组 add时如果加之后 ...

  8. 【luogu P3901 数列找不同】 题解

    对于区间查询的问题,提供一种思路: 莫队. 莫队是处理区间问题的乱搞神器,尤其是对于离线查询问题,当然也可以做在线查询,比如带修莫队. 对于有的题,莫队是乱搞骗分,而在某些地方,莫队是正解. 这道题来 ...

  9. 洛谷P3901 数列找不同(莫队水题)

    重温下手感,判断区间是否全是不同的数字有两种做法,一个长度为len的区间不同的数字,参见HH的项链,一种是区间众数,参见蒲公英,是水题没错了.明天搞数据库,然后继续自己的gre和训练计划 #inclu ...

  10. Different Integers(牛客多校第一场+莫队做法)

    题目链接:https://www.nowcoder.com/acm/contest/139/J 题目: 题意:给你n个数,q次查询,对于每次查询得l,r,求1~l和r~n元素得种类. 莫队思路:1.将 ...

随机推荐

  1. mongodb windows 4 zip安装

    安装mongoDB目的:学习Express,顺带mongodb. 本文目的: 4.0.2的mongodb在windows7上竟然安装不了. 没办法,用压缩包手动安装吧... 安装环境:win7sp1x ...

  2. java之接口开发-初级篇-socket通信

    socket通信实现util包类实现 public class SocketThread extends Thread { public void run() { while (true) { // ...

  3. Python基础灬异常

    异常&异常处理 异常!=错误 在程序运行过程中,总会遇到各种各样的错误. 有的错误是程序编写有问题造成的,比如本来应该输出整数结果输出了字符串,这种错误我们通常称之为bug,bug是必须修复的 ...

  4. sql批量更新

    -----------------更新无锡医院名称 update Opt_DKI_Hospital set centerName =tmp.[医院名称] from Opt_DKI_Hospital h ...

  5. python项目通过配置文件方式配置日志-logging

    背景:项目中引入日志是必须的,这里介绍通过配置文件config.ini的方式配置日志 1.新建config.ini 2.添加配置 [loggers]keys=root,ProxyIP [handler ...

  6. socket编程 123

    1. 预备知识 一直以来很少看到有多少人使用php的socket模块来做一些事情,大概大家都把它定位在脚本语言的范畴内吧,但是其实php的socket模块可以做很多事情,包括做ftplist,http ...

  7. Python:文件操作总结1——文件基本操作

    一.文件的操作流程 1.打开文件,得到文件句柄并赋值给一个变量 2.通过句柄对文件进行操作 3.关闭文件 二.文件的打开与关闭 A.文件的打开——open函数 语法:open(file[,mode[, ...

  8. 大学网站UI设计分析(以学校领导/历届领导为例)

    第一次的冲刺阶段让我过了一把PM的瘾,第一阶段的冲刺完成以后第一感觉就是PM不好当,在大学里做个课程设计当个PM相对而言还是比较容易的,但是我明白,当我们走向工作岗位以后,面临的情况会比学校的情况的复 ...

  9. 作业三C++

    作业心得 1.本次作业开始使用C++编写了(面向过程的C++,2333) 2.粗略学习了一下文件输入输出,和项目的创建等(在大佬眼里最基本的操作QAQ,然而我还是有点晕晕的,平时都是ctrl+n新建源 ...

  10. 【并查集】 不相交集合 - 并查集 教程(文章作者:Slyar)

    最近写了一个多星期的并查集,一瞬间贴出这么多解题报告,我想关于并查集的应用先告一段落吧,先总结一下. 在网上看到一篇关于并查集比较好的教程(姑且允许我这么说吧),不转过来是在可惜.献给爱学习的你 文章 ...