F(n) = (n % 1) + (n % 2) + (n % 3) + ...... (n % n)。其中%表示Mod,也就是余数。

例如F(6) = 6 % 1 + 6 % 2 + 6 % 3 + 6 % 4 + 6 % 5 + 6 % 6 = 0 + 0 + 0 + 2 + 1 + 0 = 3。
给出n,计算F(n), 由于结果很大,输出Mod 1000000007的结果即可。
Input
输入1个数N(2 <= N <= 10^12)。
Output
输出F(n) Mod 1000000007的结果。
Input示例
6
Output示例
3

题意:求余数之和
题解:oies
 #include <bits/stdc++.h>
#define ll __int64
using namespace std;
ll mod=;
ll ni=;
ll pow(ll a,ll b)
{
ll re=;
while(b)
{
if(b&)
re=(re*a)%mod;
b>>=;
a=(a*a)%mod;
}
return re;
}
ll sum(ll l,ll r)
{
return ((l+r)%mod)*((r-l+)%mod)%mod*ni%mod;
}
int main()
{
ni=pow(2ll,mod-);
ll n,r,ans=;
scanf("%I64d",&n);
for(int ll i=;i<=n;i=r+){
r=n/(n/i);
ans=(ans+(n/i)%mod*sum(i,r)%mod)%mod;
}
n%=mod;
printf("%I64d\n",(n*n%mod-ans+mod)%mod);
return ;
}

51nod 1225 数学的更多相关文章

  1. 51nod 1225 余数的和 数学

    1225 余数之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 F(n) = (n % 1) + (n % 2) + (n % 3) + ... ...

  2. 51nod 1225 余数之和 数论

    1225 余数之和 题目连接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1225 Description F(n) ...

  3. 51Nod 1225 余数之和 —— 分区枚举

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1225 1225 余数之和  基准时间限制:1 秒 空间限制:1 ...

  4. 51Nod 1225 余数之和 [整除分块]

    1225 余数之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 F(n) = (n % 1) + (n % 2) + (n % 3) + ... ...

  5. 51nod 1225

    题目 题解:看数据范围就估计是根号算法.考虑我们要求的式子: $ \sum\limits_{i = 1}^n {n - \left\lfloor {\frac{n}{i}} \right\rfloor ...

  6. 51nod 1225:余数之和

    传送门 题意 略 分析 \(\sum_i^n(n\%i)=\sum_i^n(n-i*n/i)=n^2-\sum_i^ni*n/i\) \(=\sum r\sum_i^ni[n/i==r]\) 可以证明 ...

  7. 51NOD 1639 绑鞋带 数学

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1639 假如一开始有一根绳子. 那么增加一根的时候,可以插在它的尾部,也可 ...

  8. 51Nod 1003 阶乘后面0的数量(数学,思维题)

    1003 阶乘后面0的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 5         难度:1级算法题 n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720 ...

  9. 51nod 1035 最长的循环节 数学

    1035 最长的循环节 题目连接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1035 Description 正整 ...

随机推荐

  1. leetcode-下一个排列

    下一个排列 实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列. 如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列). 必须原地修改,只允许使用额外 ...

  2. 阿里与ShopRunner达成协议 联手在国内推出服务

    阿里巴巴集团与美国在线零售商 ShopRunner 达成协议,将帮助后者在中国大陆销售商品和履行订单交付产品. ShopRunner 首席战略官菲奥娜·迪亚斯(Fiona Dias)周三接受媒体采访时 ...

  3. 原生开发小程序 和 wepy 、 mpvue 对比

    1.三者的开发文档以及介绍: 原生开发小程序文档:点此进入 wepy 开发文档:点此进入 mpvue 开发文档:点此进入 2.三者的简单对比: 以下用一张图来简单概括三者的区别: 小程序支持的是 WX ...

  4. Fluent Python: memoryview

    关于Python的memoryview内置类,搜索国内网站相关博客后发现对其解释都很简单, 我觉得学习一个新的知识点一般都要弄清楚两点: 1, 什么时候使用?(也就是能解决什么问题) 2,如何使用? ...

  5. winfrom 界面编辑之疑难杂症

    设计器方便,但是也存在一些问题: 1.找不到控件,但确实存在——被隐藏或被右键显示于底层或颜色与父容器一致. 解决办法: 修改隐藏属性或右键显示于顶层. 2.灵活运用右键锁定控件与解锁控件. 3.注意 ...

  6. P4语法(5) Package

    Package 对于package这个概念,类似于将一个框架中各组成部件以一个规律进行打包,以正常运转. 基于一个架构去编写一个新的pipeline的时候,需要先了解初始化的时候需要提供那些东西,pa ...

  7. 第八章 Mysql运算符

    算术运算符 符号 表达式形式 作用 + x1+x2 加法 - x1-x2 减法 * x1*x2 乘法 / x1/x2 除法 div x1 div x2 同上 % x1%x2 取余 mod mod(x1 ...

  8. 【vue】this与that 一个坑

    [转载自]:https://blog.csdn.net/qq_30378229/article/details/78429374 在Vue中this始终指向Vue,但axios中this为undefi ...

  9. ubuntu下安装 openssl&&编译运行测试代码

    检查是否已安装 openssl: sudo apt-get install openssl 如果已安装执行以下操作:sudo apt-get install libssl-devsudo apt-ge ...

  10. PHP中parent关键词

    parent关键词 parent表示“父母”的意思,在面向对象语法中,代表“父类” ——本质上就是代表父类这个“类”,而不是父类的“对象”: 其使用方式为: parent::属性或方法: //通常是静 ...