General overview[edit]

 

Illustration of the idea behind Diffie–Hellman key exchange

Diffie–Hellman key exchange establishes a shared secret between two parties that can be used for secret communication for exchanging data over a public network. The following conceptual diagram illustrates the general idea of the key exchange by using colors instead of very large numbers.

The process begins by having the two parties, Alice and Bob, agree on an arbitrary starting color that does not need to be kept secret (but should be different every time[3]); in this example the color is yellow. Each of them selects a secret color that they keep to themselves. In this case, orange and blue-green. The crucial part of the process is that Alice and Bob now mix their secret color together with their mutually shared color, resulting in orange-tan and light-blue mixtures respectively, then publicly exchange the two mixed colors. Finally, each of the two mix together the color they received from the partner with their own private color. The result is a final color mixture yellow-brown that is identical to the partner's color mixture.

If a third party listened to the exchange, it would be computationally difficult for them to determine the secret colors. In fact, when using large numbers rather than colors, this action is computationally expensive for modern supercomputers to do in a reasonable amount of time.

Cryptographic explanation[edit]

The simplest and the original implementation of the protocol uses the multiplicative group of integers modulo p, where p is prime, and g is a primitive root modulo p. These two values are chosen in this way to ensure that the resulting shared secret can take on any value from 1 to p–1. Here is an example of the protocol, with non-secret values in blue, and secret values in red.

  1. Alice and Bob agree to use a modulus p = 23 and base g = 5 (which is a primitive root modulo 23).
  2. Alice chooses a secret integer a = 4, then sends Bob A = ga mod p
    • A = 54 mod 23 = 4
  3. Bob chooses a secret integer b = 3, then sends Alice B = gb mod p
    • B = 53 mod 23 = 10
  4. Alice computes s = Ba mod p
    • s = 104 mod 23 = 18
  5. Bob computes s = Ab mod p
    • s = 43 mod 23 = 18
  6. Alice and Bob now share a secret (the number 18).

Both Alice and Bob have arrived at the same value s, because, under mod p,

{\displaystyle {\color {Blue}A}^{\color {Red}b}{\bmod {\color {Blue}p}}={\color {Blue}g}^{\color {Red}ab}{\bmod {\color {Blue}p}}={\color {Blue}g}^{\color {Red}ba}{\bmod {\color {Blue}p}}={\color {Blue}B}^{\color {Red}a}{\bmod {\color {Blue}p}}}[8]

More specifically,

{\displaystyle ({\color {Blue}g}^{\color {Red}a}{\bmod {\color {Blue}p}})^{\color {Red}b}{\bmod {\color {Blue}p}}=({\color {Blue}g}^{\color {Red}b}{\bmod {\color {Blue}p}})^{\color {Red}a}{\bmod {\color {Blue}p}}}

Note that only ab, and (gab mod p = gba mod p) are kept secret. All the other values – pgga mod p, and gb mod p – are sent in the clear. Once Alice and Bob compute the shared secret they can use it as an encryption key, known only to them, for sending messages across the same open communications channel.

Of course, much larger values of ab, and p would be needed to make this example secure, since there are only 23 possible results of n mod 23. However, if p is a prime of at least 600 digits, then even the fastest modern computers cannot find a given only gp and ga mod p. Such a problem is called the discrete logarithm problem.[3] The computation of ga mod p is known as modular exponentiation and can be done efficiently even for large numbers. Note that g need not be large at all, and in practice is usually a small integer (like 2, 3, ...).

Diffie–Hellman key exchange的更多相关文章

  1. 深入浅出Diffie–Hellman

    一.作者 这个密钥交换方法,由惠特菲尔德·迪菲(Bailey Whitfield Diffie).马丁·赫尔曼(Martin Edward Hellman)于1976年发表. 二.说明 它是一种安全协 ...

  2. 浅析Diffie–Hellman

    一.作者 这个密钥交换方法,由惠特菲尔德·迪菲(Bailey Whitfield Diffie).马丁·赫尔曼(Martin Edward Hellman)于1976年发表. 二.说明 它是一种安全协 ...

  3. Git 常见问题: unable to negotiate with *.*.*.*: no matching key exchange methodfound...

    在Windows上更新了git 版本后,clone/pull时出现错误, unable to negotiate with *.*.*.*: no matching key exchange meth ...

  4. Navicat 用ssh通道连接时总是报错 (报错信息:SSH:expected key exchange group packet form serve

    转:https://blog.csdn.net/qq_27463323/article/details/76830731 之前下了一个Navicat 11.0 版本 用ssh通道连接时总是报错 (报错 ...

  5. 连接远程数据库时出现 SSH: expected key exchange group packet from server / 2003 - Can't connect to MySQL server on 'XXX' (10038) / 1130 - Host 'XXX' is not allowed to connect to this MySQL server

    昨天在自己的远程服务器上玩,把系统重装了.新装了MySQL,在本地用navicat连接的时候出了几个小问题. 问题一:SSH: expected key exchange group packet f ...

  6. git clone 报错Unable to negotiate with xxx.xxx.xxx.xxx port 12345: no matching key exchange method found. Their offer: diffie-hellman-group1-sha1

    在执行git clone命令报错 Unable to negotiate with xxx.xxx.xxx.xxx port 12345: no matching key exchange metho ...

  7. 关于no matching key exchange method found. Their offer: diffie-hellman-group1-sha1的解决办法

    原文链接:https://mycyberuniverse.com/error/no-matching-key-exchange-method-found-openssh7.html What caus ...

  8. 数据库连接出错 expected key exchange group packet form server

    数据库连接出错 expected key exchange group packet form server SSH: expected key exchange group packet form ...

  9. no matching key exchange method found. Their offer: diffie-hellman-group1-sha1

    1. 使用git克隆项目报错 $ git clone ssh://liuchao@192.168.7.32:29418/platform/Midou Cloning into 'Midou'... U ...

随机推荐

  1. 关于C#微信公众号开发的前言说明

    本人是昨天开始接触微信公众号开发的,昨天看一天官方文档,基本上晕乎乎的,刚开始接触这个真的有点困难,特别是C#在这方面的资料不多,不如php java方面的资料全. 所以我准备每天写一点关于C#微信开 ...

  2. JS零碎小知识

    filter()方法对数组进行过滤,生成新数组 var aqiNewData = aqiData.filter(function(data){ return data[1]>60; }); // ...

  3. DialogFragment 将数据传回Activity的onActivityResult方法

    在MyActivity中 弹出一个DialogFragment (某一个控件的点击事件) search= findViewById(R.id.search); search.setOnClickLis ...

  4. NAIPC2018-K-Zoning Houses

    题目描述 Given a registry of all houses in your state or province, you would like to know the minimum si ...

  5. ⑦ 设计模式的艺术-13.代理(Proxy)模式

    为什么需要代理模式 中介隔离作用:在某些情况下,一个客户类不想或者不能直接引用一个委托对象,而代理类对象可以在客户类和委托对象之间起到中介的作用,其特征是代理类和委托类实现相同的接口. 开闭原则,增加 ...

  6. 无废话JavaScript(上)

    <程序员>2008.09期有一篇名为<无废话ErLang>的文章,这让我想到了许多的诸如“无废话C”.“无废话书评”这类的文章,也想到了JavaScript可没有一篇“无废话” ...

  7. easyUI导出数据

    easyUI导出数据模式 后台: //导出数据 public function index_doExport() { $search['diqu']=$_POST['diqu']; $search[' ...

  8. Spring Boot工程结构推荐

    工程结构(最佳实践) Spring Boot框架本身并没有对工程结构有特别的要求,但是按照最佳实践的工程结构可以帮助我们减少可能会遇见的坑,尤其是Spring包扫描机制的存在,如果您使用最佳实践的工程 ...

  9. node连接数据库(express+mysql)

    操作是在ubuntu系统的下环境,简单记录一下过程. 首先用apt-get安装数据库,键入命令 sudo apt-get install mysql-server , 一路回车,然后在一个界面设置一下 ...

  10. Go语言 6 结构体、方法和接口

    文章由作者马志国在博客园的原创,若转载请于明显处标记出处:http://www.cnblogs.com/mazg/ Go学习群:415660935 结构体(struct)是由一系列具有相同类型或不同类 ...