【卷积神经网络】对BN层的解释
前言
Batch Normalization是由google提出的一种训练优化方法。参考论文:Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift
个人觉得BN层的作用是加快网络学习速率,论文中提及其它的优点都是这个优点的副产品。
网上对BN解释详细的不多,大多从原理上解释,没有说出实际使用的过程,这里从what, why, how三个角度去解释BN。
What is BN
Normalization是数据标准化(归一化,规范化),Batch 可以理解为批量,加起来就是批量标准化。
先说Batch是怎么确定的。在CNN中,Batch就是训练网络所设定的图片数量batch_size。
Normalization过程,引用论文中的解释:
输入:输入数据x1..xm(这些数据是准备进入激活函数的数据)
计算过程中可以看到,
1.求数据均值;
2.求数据方差;
3.数据进行标准化(个人认为称作正态化也可以)
4.训练参数γ,β
5.输出y通过γ与β的线性变换得到新的值
在正向传播的时候,通过可学习的γ与β参数求出新的分布值
在反向传播的时候,通过链式求导方式,求出γ与β以及相关权值
Why is BN
解决的问题是梯度消失与梯度爆炸。
关于梯度消失,以sigmoid函数为例子,sigmoid函数使得输出在[0,1]之间。
事实上x到了一定大小,经过sigmoid函数的输出范围就很小了,参考下图
如果输入很大,其对应的斜率就很小,我们知道,其斜率(梯度)在反向传播中是权值学习速率。所以就会出现如下的问题,
在深度网络中,如果网络的激活输出很大,其梯度就很小,学习速率就很慢。假设每层学习梯度都小于最大值0.25,网络有n层,因为链式求导的原因,第一层的梯度小于0.25的n次方,所以学习速率就慢,对于最后一层只需对自身求导1次,梯度就大,学习速率就快。
这会造成的影响是在一个很大的深度网络中,浅层基本不学习,权值变化小,后面几层一直在学习,结果就是,后面几层基本可以表示整个网络,失去了深度的意义。
关于梯度爆炸,根据链式求导法,
第一层偏移量的梯度=激活层斜率1x权值1x激活层斜率2x…激活层斜率(n-1)x权值(n-1)x激活层斜率n
假如激活层斜率均为最大值0.25,所有层的权值为100,这样梯度就会指数增加。
How to use BN
先解释一下对于图片卷积是如何使用BN层。
这是文章卷积神经网络CNN(1)中5x5的图片通过valid卷积得到的3x3特征图(粉红色)。特征图里的值,作为BN的输入,也就是这9个数值通过BN计算并保存γ与β,通过γ与β使得输出与输入不变。假设输入的batch_size为m,那就有m*9个数值,计算这m*9个数据的γ与β并保存。正向传播过程如上述,对于反向传播就是根据求得的γ与β计算梯度。
这里需要着重说明2个细节:
1.网络训练中以batch_size为最小单位不断迭代,很显然,新的batch_size进入网络,机会有新的γ与β,因此,在BN层中,有总图片数/batch_size组γ与β被保存下来。
2.图像卷积的过程中,通常是使用多个卷积核,得到多张特征图,对于多个的卷积核需要保存多个的γ与β。
结合论文中给出的使用过程进行解释
输入:待进入激活函数的变量
输出:
1.对于K维的输入,假设每一维包含m个变量,所以需要K个循环。每个循环中按照上面所介绍的方法计算γ与β。这里的K维,在卷积网络中可以看作是卷积核个数,如网络中第n层有64个卷积核,就需要计算64次。
需要注意,在正向传播时,会使用γ与β使得BN层输出与输入一样。
2.在反向传播时利用γ与β求得梯度从而改变训练权值(变量)。
3.通过不断迭代直到训练结束,求得关于不同层的γ与β。如网络有n个BN层,每层根据batch_size决定有多少个变量,设定为m,这里的mini-batcherB指的是特征图大小*batch_size,即m=特征图大小*batch_size,因此,对于batch_size为1,这里的m就是每层特征图的大小。
4.不断遍历训练集中的图片,取出每个batch_size中的γ与β,最后统计每层BN的γ与β各自的和除以图片数量得到平均直,并对其做无偏估计直作为每一层的E[x]与Var[x]。
5.在预测的正向传播时,对测试数据求取γ与β,并使用该层的E[x]与Var[x],通过图中11:所表示的公式计算BN层输出。
注意,在预测时,BN层的输出已经被改变,所以BN层在预测的作用体现在此处
至此,BN层的原理与使用过程就解释完毕,给出的解释都是本人觉得值得注意或这不容易了解的部分,如有錯漏,请指正。
【卷积神经网络】对BN层的解释的更多相关文章
- 【python实现卷积神经网络】padding2D层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
- 【python实现卷积神经网络】Flatten层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
- 【python实现卷积神经网络】Dropout层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
- 【python实现卷积神经网络】激活层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
- BN层
论文名字:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 论 ...
- 神经网络:卷积神经网络CNN
一.前言 这篇卷积神经网络是前面介绍的多层神经网络的进一步深入,它将深度学习的思想引入到了神经网络当中,通过卷积运算来由浅入深的提取图像的不同层次的特征,而利用神经网络的训练过程让整个网络自动调节卷积 ...
- 卷积神经网络(CNN)新手指南 1
http://blog.csdn.net/real_myth/article/details/52273930 卷积神经网络(CNN)新手指南 2016-07-29 18:22 Blake 1条评论 ...
- 卷积神经网络CNN与深度学习常用框架的介绍与使用
一.神经网络为什么比传统的分类器好 1.传统的分类器有 LR(逻辑斯特回归) 或者 linear SVM ,多用来做线性分割,假如所有的样本可以看做一个个点,如下图,有蓝色的点和绿色的点,传统的分类器 ...
- 【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...
随机推荐
- PostgreSQL学习手册-模式Schema(转)
原文:http://www.cnblogs.com/stephen-liu74/archive/2012/04/25/2291526.html 一个数据库包含一个或多个命名的模式,模式又包含表.模式还 ...
- first-child与:first-of-type的区别
css选择器中:first-child与:first-of-type的区别 :first-child选择器是css2中定义的选择器,从字面意思上来看也很好理解,就是第一个子元素.比如有段代码: p:f ...
- HTTP来源地址
HTTP来源地址(referer,或HTTP referer),是HTTP表头的一个字段,用来表示从哪儿链接到目前的网页,采用的格式是URL. 换句话说,借着HTTP来源地址,目前的网页可以检查访客从 ...
- Oracle 学习笔记 12 -- 序列、索引、同义词
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/Topyuluo/article/details/24232449 数据库的对象包含:表.视图.序列. ...
- ALV tree标准DEMO
BCALV_TREE_01 ALV 树控制:构建层次树 BCALV_TREE_02 ALV 树控制:事件处理 BCALV_TREE_03 ALV 树控制:使用自己的上下文菜单 BCALV_TREE_0 ...
- data.table进阶
上一篇讲述了data.table数据分析的一些基本方法,但是最近在用作数据分析时,发现在面对一些复杂场景时,这些基本的用法已经不能满足业务需求了,所以此篇就介绍data.table更进一步的用法. 先 ...
- CentOS 6下OpenCV的安装与配置
自己按照网上的教程一步一步来的 http://www.jb51.net/os/RedHat/280309.html 虚拟机环境 CentOS 6.5 内核版本:4.1.14 64位 gcc,gcc 4 ...
- 使用python操作json文本文件
使用python读写文本文件内容时,我们知道如果文本文件里的内容无规律,那么修改起来比较麻烦.但是如果文本文件存储是有规律的,比如JSON格式,在利用python内置的函数把JSON格式的数据转成py ...
- 3.MySQL必知必会之检索数据-SELECT语句
本章将介绍如何使用SELECT语句从表中检索一个或多个数据列. 1.SELECT语句 SQL语句是由简单的英语单词构成的.这些单词称为关键字,每个SQL语句都是由一个或多个关键字构成的.大概,最经常使 ...
- Java TreeMap详细介绍和使用示例
①对TreeMap有个整体认识 TreeMap是一个有序的key-value集合,它是通过红黑树实现的. TreeMap继承于AbstractMap,所以它是一个Map,即key-value集合. T ...