程序编码参考经典的细化或者骨架算法文章:

T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital patterns,” Comm. ACM, vol. 27, no. 3, pp. 236-239, 1984.

它的原理也很简单:

      我们对一副二值图像进行骨架提取,就是删除不需要的轮廓点,只保留其骨架点。假设一个像素点,我们定义该点为p1,则它的八邻域点p2->p9位置如下图所示,该算法考虑p1点邻域的实际情况,以便决定是否删除p1点。假设我们处理的为二值图像,背景为黑色,值为0,要细化的前景物体像素值为1。

算法的描述如下。

首先复制源图像到目地图像,然后建立一个临时图像,接着执行下面操作:

1. 把目地图像复制给临时图像,对临时图像进行一次扫描,对于不为0的点,如果满足以下四个条件,则在目地图像中删除该点(就是设置该像素为0),这里p2,…,p9是对应位置的像素灰度值(其为1或者0)。

   a. 2<= p2+p3+p4+p5+p6+p7+p8+p9<=6

    大于等于2会保证p1点不是端点或孤立点,因为删除端点和孤立点是不合理的,小于等于6保证p1点是一个边界点,而不是一个内部点。等于0时候,周围没有等于1的像素,所以p1为孤立点,等于1的时候,周围只有1个灰度等于1的像素,所以是端点(注:端点是周围有且只能有1个值为1的像素)。

 

   b. p2->p9的排列顺序中,01模式的数量为1,比如下面的图中,有p2p3 => 01, p6p7=>01,所以该像素01模式的数量为2。

     之所以要01模式数量为1,是要保证删除当前像素点后的连通性。比如下面的图中,01模式数量大于1,如果删除当前点p1,则连通性不能保证。

    c. P2*p4*p6 = 0

    d. p4*p6*p8 = 0

      在第一次子迭代中,只是移去东南的边界点,而不考虑西北的边界点,注意p4,p6出现了2次,就是说它们有一个为0,则c,d就满足。

2. 接下来,把目地图像再次复制到临时图像,接着对临时图像进行一次扫描,如果不为0的点它的八邻域满足以下4个条件,则在目地图像中删除该点(就是设置该像素为0)

    a. 2<= p2+p3+p4+p5+p6+p7+p8+p9<=6

    b. p2->p9的排列顺序中,01模式的数量(这里假设二值图非零值为1)为1。

    c. p2*p4*p8 = 0

    d. p2*p6*p8 = 0

第二次迭代则相反,会移去西北的边界点,注意p2,p8出现了2次,就是说它们有一个为0,则c,d就满足。

执行完上面两个步骤后,就完成了一次细化算法,我们可以多次迭代执行上述过程,得到最终的骨架图。

细化算法代码如下:

void gThin::cvThin(cv::Mat& src, cv::Mat& dst, int intera)
{
if(src.type()!=CV_8UC1)
{
printf("只能处理二值或灰度图像\n");
return;
}
//非原地操作时候,copy src到dst
if(dst.data!=src.data)
{
src.copyTo(dst);
} int i, j, n;
int width, height;
width = src.cols -1;
//之所以减1,是方便处理8邻域,防止越界
height = src.rows -1;
int step = src.step;
int p2,p3,p4,p5,p6,p7,p8,p9;
uchar* img;
bool ifEnd;
int A1;
cv::Mat tmpimg;
//n表示迭代次数
for(n = 0; n<intera; n++)
{
dst.copyTo(tmpimg);
ifEnd = false;
img = tmpimg.data;
for(i = 1; i < height; i++)
{
img += step;
for(j =1; j<width; j++)
{
uchar* p = img + j;
A1 = 0;
if( p[0] > 0)
{
if(p[-step]==0&&p[-step+1]>0) //p2,p3 01模式
{
A1++;
}
if(p[-step+1]==0&&p[1]>0) //p3,p4 01模式
{
A1++;
}
if(p[1]==0&&p[step+1]>0) //p4,p5 01模式
{
A1++;
}
if(p[step+1]==0&&p[step]>0) //p5,p6 01模式
{
A1++;
}
if(p[step]==0&&p[step-1]>0) //p6,p7 01模式
{
A1++;
}
if(p[step-1]==0&&p[-1]>0) //p7,p8 01模式
{
A1++;
}
if(p[-1]==0&&p[-step-1]>0) //p8,p9 01模式
{
A1++;
}
if(p[-step-1]==0&&p[-step]>0) //p9,p2 01模式
{
A1++;
}
p2 = p[-step]>0?1:0;
p3 = p[-step+1]>0?1:0;
p4 = p[1]>0?1:0;
p5 = p[step+1]>0?1:0;
p6 = p[step]>0?1:0;
p7 = p[step-1]>0?1:0;
p8 = p[-1]>0?1:0;
p9 = p[-step-1]>0?1:0;
if((p2+p3+p4+p5+p6+p7+p8+p9)>1 && (p2+p3+p4+p5+p6+p7+p8+p9)<7 && A1==1)
{
if((p2==0||p4==0||p6==0)&&(p4==0||p6==0||p8==0)) //p2*p4*p6=0 && p4*p6*p8==0
{
dst.at<uchar>(i,j) = 0; //满足删除条件,设置当前像素为0
ifEnd = true;
}
}
}
}
} dst.copyTo(tmpimg);
img = tmpimg.data;
for(i = 1; i < height; i++)
{
img += step;
for(j =1; j<width; j++)
{
A1 = 0;
uchar* p = img + j;
if( p[0] > 0)
{
if(p[-step]==0&&p[-step+1]>0) //p2,p3 01模式
{
A1++;
}
if(p[-step+1]==0&&p[1]>0) //p3,p4 01模式
{
A1++;
}
if(p[1]==0&&p[step+1]>0) //p4,p5 01模式
{
A1++;
}
if(p[step+1]==0&&p[step]>0) //p5,p6 01模式
{
A1++;
}
if(p[step]==0&&p[step-1]>0) //p6,p7 01模式
{
A1++;
}
if(p[step-1]==0&&p[-1]>0) //p7,p8 01模式
{
A1++;
}
if(p[-1]==0&&p[-step-1]>0) //p8,p9 01模式
{
A1++;
}
if(p[-step-1]==0&&p[-step]>0) //p9,p2 01模式
{
A1++;
}
p2 = p[-step]>0?1:0;
p3 = p[-step+1]>0?1:0;
p4 = p[1]>0?1:0;
p5 = p[step+1]>0?1:0;
p6 = p[step]>0?1:0;
p7 = p[step-1]>0?1:0;
p8 = p[-1]>0?1:0;
p9 = p[-step-1]>0?1:0;
if((p2+p3+p4+p5+p6+p7+p8+p9)>1 && (p2+p3+p4+p5+p6+p7+p8+p9)<7 && A1==1)
{
if((p2==0||p4==0||p8==0)&&(p2==0||p6==0||p8==0)) //p2*p4*p8=0 && p2*p6*p8==0
{
dst.at<uchar>(i,j) = 0; //满足删除条件,设置当前像素为0
ifEnd = true;
}
}
}
}
} //如果两个子迭代已经没有可以细化的像素了,则退出迭代
if(!ifEnd) break;
} }

下面是三次细化的结果,可以看出在垂直方向H变短了,感觉这是不完美的地方。

下面我们对两个汉字进行5次迭代细化,结果如下:

程序代码:工程FirstOpenCV11

OpenCV学习(13) 细化算法(1)的更多相关文章

  1. OpenCV学习(16) 细化算法(4)

    本章我们学习Rosenfeld细化算法,参考资料:http://yunpan.cn/QGRjHbkLBzCrn 在开始学习算法之前,我们先看下连通分量,以及4连通性,8连通性的概念: http://w ...

  2. OpenCV学习(18) 细化算法(6)

    本章我们在学习一下基于索引表的细化算法. 假设要处理的图像为二值图,前景值为1,背景值为0. 索引表细化算法使用下面的8邻域表示法: 一个像素的8邻域,我们可以用8位二进制表示,比如下面的8邻域,表示 ...

  3. OpenCV学习(15) 细化算法(3)

          本章我们学习一下Hilditch算法的基本原理,从网上找资料的时候,竟然发现两个有很大差别的算法描述,而且都叫Hilditch算法.不知道那一个才是正宗的,两个算法实现的效果接近,第一种算 ...

  4. OpenCV学习(17) 细化算法(5)

    本章我们看下Pavlidis细化算法,参考资料http://www.imageprocessingplace.com/downloads_V3/root_downloads/tutorials/con ...

  5. OpenCV学习(14) 细化算法(2)

          前面一篇教程中,我们实现了Zhang的快速并行细化算法,从算法原理上,我们可以知道,算法是基于像素8邻域的形状来决定是否删除当前像素.还有很多与此算法相似的细化算法,只是判断的条件不一样. ...

  6. OpenCV学习(19) 细化算法(7)

    最后再来看一种通过形态学腐蚀和开操作得到骨架的方法.http://felix.abecassis.me/2011/09/opencv-morphological-skeleton/ 代码非常简单: v ...

  7. c++opencv中线条细化算法

    要达到的效果就是将线条尽量细化成单像素,按照论文上的Hilditch算法试了一下,发现效果不好,于是自己尝试着写了一下细化的算法,基本原理就是从上下左右四个方向向内收缩. 1.先是根据图片中的原则确定 ...

  8. OpenCV学习(9) 分水岭算法(3)

    本教程我学习一下opencv中分水岭算法的具体实现方式. 原始图像和Mark图像,它们的大小都是32*32,分水岭算法的结果是得到两个连通域的轮廓图. 原始图像:(原始图像必须是3通道图像) Mark ...

  9. OpenCV学习(21) Grabcut算法详解

    grab cut算法是graph cut算法的改进.在理解grab cut算之前,应该学习一下graph cut算法的概念及实现方式. 我搜集了一些graph cut资料:http://yunpan. ...

随机推荐

  1. Zookeeper(二)Zookeeper原理与API应用

    一 Zookeeper概述 1.1 概述 Zookeeper是Google的Chubby一个开源的实现.它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护.名字服务. 分布式同步.组服 ...

  2. Python 的十个自然语言处理工具

    原文 先mark,后续尝试. 1.NLTK NLTK 在用 Python 处理自然语言的工具中处于领先的地位.它提供了 WordNet 这种方便处理词汇资源的借口,还有分类.分词.除茎.标注.语法分析 ...

  3. Roman to Integer & Integer to Roman

    题目: Given a roman numeral, convert it to an integer. Input is guaranteed to be within the range from ...

  4. [实战]MVC5+EF6+MySql企业网盘实战(18)——文件上传,下载,修改

    写在前面 经过一段时间的秀秀改改,终于把文件上传下载,修改文件夹文件名称的功能实现了. 系列文章 [EF]vs15+ef6+mysql code first方式 [实战]MVC5+EF6+MySql企 ...

  5. 【LOJ】#2085. 「NOI2016」循环之美

    题解 我们要求的其实是这个东西= = \(\sum_{i = 1}^{n}\sum_{j = 1}^{n}[(i,j) == 1][(j,k) == 1]\) 然后变一下形 \(\sum_{j = 1 ...

  6. HTML框架与表单

    1.框架处理结构 <html> <head> <meta http-equiv="Content-Type" content="text/h ...

  7. Wireshark数据抓包教程之Wireshark捕获数据

    Wireshark数据抓包教程之Wireshark捕获数据 Wireshark抓包方法 在使用Wireshark捕获以太网数据,可以捕获分析到自己的数据包,也可以去捕获同一局域网内,在知道对方IP地址 ...

  8. 51nod2000 四边形分割平面 规律题

    观察样例,$ans(1) = 1, ans(2) = 10$,再手推一组,$ans(3) = 26$ 可以发现规律$ans(n) = (2n - 1)^2 + 1$ 如果还是没看出规律,那么打个程序去 ...

  9. luoguP3830 [SHOI2012]随机树 期望概率 + 动态规划 + 结论

    题意非常的复杂,考虑转化一下: 每次选择一个叶节点,删除本叶节点(深度为$dep$)的同时,加入两个深度为$dep + 1$的叶节点,重复$n$轮 首先考虑第$1$问,(你看我这种人相信数据绝对是最大 ...

  10. POJ 3553 Light Switching Game 博弈论 nim积 sg函数

    http://poj.org/problem?id=3533 变成三维的nim积..前面hdu那个算二维nim积的题的函数都不用改,多nim积一次就过了...longlong似乎不必要但是还是加上了 ...