2002: [Hnoi2010]Bounce 弹飞绵羊

Time Limit: 10 Sec  Memory Limit: 259 MB
Submit: 9844  Solved: 5070
[Submit][Status][Discuss]

Description

某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏。游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞。绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞。为了使得游戏更有趣,Lostmonkey可以修改某个弹力装置的弹力系数,任何时候弹力系数均为正整数。

Input

第一行包含一个整数n,表示地上有n个装置,装置的编号从0到n-1,接下来一行有n个正整数,依次为那n个装置的初始弹力系数。第三行有一个正整数m,接下来m行每行至少有两个数i、j,若i=1,你要输出从j出发被弹几次后被弹飞,若i=2则还会再输入一个正整数k,表示第j个弹力装置的系数被修改成k。对于20%的数据n,m<=10000,对于100%的数据n<=200000,m<=100000

Output

对于每个i=1的情况,你都要输出一个需要的步数,占一行。

Sample Input

4
1 2 1 1
3
1 1
2 1 1
1 1

Sample Output

2
3

HINT

 

Source

思路:感觉这个如果说用分块的话感觉是基础题?

总体思路就是分成sqrt(n)块,然后每次都对这个块内进行更新, need表示每次走的步数,我们就只要for(j = r[i]; j >= l[i]; j--) 来逆序迭代更新就好了。

//看看会不会爆int!数组会不会少了一维!
//取物问题一定要小心先手胜利的条件
#include <bits/stdc++.h>
using namespace std;
#pragma comment(linker,"/STACK:102400000,102400000")
#define LL long long
#define ALL(a) a.begin(), a.end()
#define pb push_back
#define mk make_pair
#define fi first
#define se second
#define haha printf("haha\n")
const int maxn = * ;
int n, m;
int step[maxn];
int l[maxn], r[maxn], belong[maxn], block, num;
int to[maxn], need[maxn]; void build(){
block = sqrt(n); num = n / block;
if (n % block) num++;
for (int i = ; i <= num; i++){
l[i] = (i - ) * block + , r[i] = i * block;
}
for (int i = ; i <= n; i++)
belong[i] = (i - ) / block + ;
} void update(int be){
for (int i = l[be]; i <= r[be]; i++)
to[i] = -, need[i] = ;
for (int i = r[be]; i >= l[be]; i--){
int nxtpos = i + step[i];
if (nxtpos > n) nxtpos = n + ;
if (belong[nxtpos] != be){//如果只走一步,且两个不是同一个块
to[i] = nxtpos; need[i] = ;
}
else {//同一个块
need[i] = ;
need[i] += need[nxtpos];
to[i] = to[nxtpos];
}
}
} void query(int pos){
int cnt = ;
while (pos <= n){
cnt += need[pos];
pos = to[pos];
}
printf("%d\n", cnt);
} int main(){
cin >> n;
for (int i = ; i <= n; i++){
scanf("%d", step + i);
}
build();
memset(to, -, sizeof(to));
for (int i = ; i <= num; i++){
update(i);
}
/*
for (int i = 1; i <= n; i++){
printf("to[%d] = %d need[%d] = %d\n", i, to[i], i, need[i]);
}
*/
cin >> m;
for (int i = ; i <= m; i++){
int a, b, c;
scanf("%d%d", &a, &b); b++;
if (a == ){
scanf("%d", &c);
step[b] = c;
update(belong[b]);
}
else {
query(b);
}
}
return ;
}

关键:分块的魅力在于每次不需要将序列全部更新,而是只需要更新其中的片段

分块 (貌似能用LCT做,反正我现在还不会) BZOJ 2002的更多相关文章

  1. BZOJ 2002 && BZOJ 2409 LCT && BZOJ 3282 初步练习

    #include <cstdio> ; inline void Get_Int(int & x) { ; ') ch=getchar(); +ch-'; ch=getchar(); ...

  2. 以 BZOJ 2002 为例学习有根树LCT(Link-Cut Tree)

    以BZOJ 2002 弹飞绵羊为例学习有根树LCT(Link-Cut Tree) 注:本文非常简单,只涉及有根树LCT,对于无根树,LCT还有几个本文没有提到的操作,以后慢慢更新 =v= 知识储备 [ ...

  3. LCT做题笔记

    最近几天打算认真复习LCT,毕竟以前只会板子.正好也可以学点新的用法,这里就用来写做题笔记吧.这个分类比较混乱,主要看感觉,不一定对: 维护森林的LCT 就是最普通,最一般那种的LCT啦.这类题目往往 ...

  4. Bootstrap 貌似不错,先做一下记录

    Bootstrap 简洁.直观.强悍的前端开发框架,让web开发更迅速.简单. http://www.bootcss.com/

  5. 【BZOJ 2002】【Hnoi 2010】弹飞绵羊 分块||Link Cut Tree 两种方法

    ShallWe,Yveh,hmy,DaD3zZ,四人吃冰糕从SLYZ超市出来后在马路上一字排开,,,吃完后发现冰糕棍上写着:“向狮子座表白:愿做你的小绵羊”,,, 好吧在这道题里我们要弹飞绵羊,有分块 ...

  6. BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 分块

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOn ...

  7. bzoj 2002 弹飞绵羊 分块

    正解lct,然而本蒟蒻并不会.... 分块思路很清晰,处理出每个点弹出所在块所需要的步数及出去后的第一个位置 #include<cstdio> #include<cstring> ...

  8. bzoj 2002 : [Hnoi2010]Bounce 弹飞绵羊 (LCT)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2002 题面: 2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: ...

  9. bzoj 2002: [Hnoi2010]Bounce 弹飞绵羊(分块算法)

    传送门 题意: 中文题意,不再赘述. 题解: 下午在补分块算法的相关知识,看到某大神博客推荐的这道题目,就试着做了做: TLE了一下午可还行: 我的思路: 将这 n 个点分成 sqrt(n) 块: i ...

随机推荐

  1. Thunder——互评beta版本

    基于NABCD和spec评论作品 Hello World!:http://www.cnblogs.com/vector121/p/7922989.html 欢迎来怼:http://www.cnblog ...

  2. 20172305 暑假作业 之 TimeCalculate & Save Iron Man

    20172305 暑假作业 之 TimeCalculate & Save Iron Man TimeCalculate 项目介绍 项目名称: TimeCalculate 项目简介: 本项目基于 ...

  3. 02慕课网《进击Node.js基础(一)》——CommonJs标准

    是一套规范管理模块 每个js 为一个模块,多个模块作为一个包 node.js和Couchdb是对其的实现: 不同于jQuery 模块:定义.标识.引用(地址/模块名称) 模块类型: 核心模块http ...

  4. [数位DP]把枚举变成递推(未完)

    动态规划(DP)是个很玄学的东西 数位DP实际上 就是把数字上的枚举变成按位的递推 有伪代码 for i =这一位起始值 i<=这一位终止值 dp[这一位][i]+=dp[这一位-1][i]+- ...

  5. 读 《我是一只IT小小鸟》 有感

    在没有上大学之前,我很迷茫自己将来要从事什么行业.有人说,人生的每一个阶段都应该有自己的目标,然而,我上大学之前,甚至大一下学期之前,我对于我今后的从业道路,人生规划,都是迷茫的.高考结束成绩出来后, ...

  6. 获取Class实例的三种方式

    方式一: 通过类.枚举.接口.注解.数组类型.原生类型的名称.class  package com.rong.test; public class TestClass { public static ...

  7. Jmeter 中JDBC request 详解 !

    JDBC Request: 这个sampler可以向数据库发送一个jdbc请求(sql语句),它经常需要和JDBC Connection Configuration 配置元件一起配合使用. 目录: 一 ...

  8. linux php 访问sql server设置

    1.安装freeTDS wget ftp://ftp.freetds.org/pub/freetds/stable/freetds-stable.tgz 1.1.进入到你下载的目录然后解压.tar - ...

  9. CSS自适应导航菜单

    以下是一个简单实例,可以通过学习了解响应工菜单的制作. html <nav class="nav"> <ul> <li class="cur ...

  10. 2017 ACM Arabella Collegiate Programming Contest(solved 9/13, complex 12/13)

    A.Sherlock Bones 题意: 给出长度为n的01串,问f(i,j)=f(j,k),(i<j<k)的i,j,k取值种数.其中f(i,j)表示[i,j]内1的个数, 且s[j]必须 ...