这类型的题目其实没什么意思..知道怎么做后,就有固定套路了..而且感觉这东西要出的很难的话,有这种方法解常数会比较大吧..所以一般最多套一些比较简单的直接可以暴力求循环节的题目了..

/** @Date    : 2017-09-26 16:37:05
* @FileName: HDU 3977 斐波那契循环节.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const double eps = 1e-8; /////////
LL mul(LL x, LL y, LL mod)
{
return (x * y - (LL)(x / (long double)mod * y + 1e-3) * mod + mod) % mod;
} struct Matrix
{
LL m[2][2];
}; Matrix A;
Matrix I = {1, 0, 0, 1}; Matrix multi(Matrix a, Matrix b, LL MOD)
{
Matrix c;
for(int i = 0; i < 2; i++)
{
for(int j = 0; j < 2; j++)
{
c.m[i][j] = 0;
for(int k = 0; k < 2; k++)
c.m[i][j] = (c.m[i][j] % MOD + (a.m[i][k] % MOD) * (b.m[k][j] % MOD) % MOD) % MOD;
c.m[i][j] %= MOD;
}
}
return c;
} Matrix power(Matrix a, LL k, LL MOD)
{
Matrix ans = I, p = a;
while(k)
{
if(k & 1)
{
ans = multi(ans, p, MOD);
k--;
}
k >>= 1;
p = multi(p, p, MOD);
}
return ans;
} LL gcd(LL a, LL b)
{
return b ? gcd(b, a % b) : a;
} const int N = 400005;
const int NN = 5005; LL num[NN], pri[NN];
LL fac[NN];
int cnt, c; bool prime[N];
int p[N];
int k; void isprime()
{
k = 0;
memset(prime, true, sizeof(prime));
for(int i = 2; i < N; i++)
{
if(prime[i])
{
p[k++] = i;
for(int j = i + i; j < N; j += i)
prime[j] = false;
}
}
} LL fpow(LL a, LL b, LL m)
{
LL ans = 1;
a %= m;
while(b)
{
if(b & 1)
{
ans = mul(ans, a , m);
b--;
}
b >>= 1;
a = mul(a , a , m);
}
return ans;
} LL legendre(LL a, LL p)
{
if(fpow(a, (p - 1) >> 1, p) == 1)
return 1;
else return -1;
} void Solve(LL n, LL pri[], LL num[])
{
cnt = 0;
LL t = (LL)sqrt(1.0 * n);
for(int i = 0; p[i] <= t; i++)
{
if(n % p[i] == 0)
{
int a = 0;
pri[cnt] = p[i];
while(n % p[i] == 0)
{
a++;
n /= p[i];
}
num[cnt] = a;
cnt++;
}
}
if(n > 1)
{
pri[cnt] = n;
num[cnt] = 1;
cnt++;
}
} void Work(LL n)
{
c = 0;
LL t = (LL)sqrt(1.0 * n);
for(int i = 1; i <= t; i++)
{
if(n % i == 0)
{
if(i * i == n) fac[c++] = i;
else
{
fac[c++] = i;
fac[c++] = n / i;
}
}
}
} LL get_loop(LL n)
{
Solve(n, pri, num);
LL ans = 1;
for(int i = 0; i < cnt; i++)
{
LL record = 1;
if(pri[i] == 2)
record = 3;
else if(pri[i] == 3)
record = 8;
else if(pri[i] == 5)
record = 20;
else
{
if(legendre(5, pri[i]) == 1)
Work(pri[i] - 1);
else
Work(2 * (pri[i] + 1));
sort(fac, fac + c);
for(int k = 0; k < c; k++)
{
Matrix a = power(A, fac[k] - 1, pri[i]);
LL x = (a.m[0][0] % pri[i] + a.m[0][1] % pri[i]) % pri[i];
LL y = (a.m[1][0] % pri[i] + a.m[1][1] % pri[i]) % pri[i];
if(x == 1 && y == 0)
{
record = fac[k];
break;
}
}
}
for(int k = 1; k < num[i]; k++)
record *= pri[i];
ans = ans / gcd(ans, record) * record;
}
return ans;
} LL fib[5005]; void Init()
{
A.m[0][0] = 1;
A.m[0][1] = 1;
A.m[1][0] = 1;
A.m[1][1] = 0;
fib[0] = 0;
fib[1] = 1;
for(int i = 2; i < 5005; i++)
fib[i] = fib[i - 1] + fib[i - 2];
}
//////////
int main()
{
Init();
isprime();
int T;
cin >> T;
int icas = 0;
while(T--)
{
LL n;
cin >> n;
LL ans = get_loop(n);
printf("Case #%d: %lld\n", ++icas, ans);
}
return 0;
}

HDU 3977 斐波那契循环节的更多相关文章

  1. HDu4794 斐波那契循环节

    题意:Arnold变换把矩阵(x,y)变成((x+y)%n,(x+2*y)%n),问最小循环节 题解:仔细算前几项能看出是斐波那契数论modn,然后套个斐波那契循环节板子即可 //#pragma GC ...

  2. HDU 2814 斐波那契循环节 欧拉降幂

    一看就是欧拉降幂,问题是怎么求$fib(a^b)$,C给的那么小显然还是要找循环节.数据范围出的很那啥..unsigned long long注意用防爆的乘法 /** @Date : 2017-09- ...

  3. HDU 2855 斐波那契+矩阵快速幂

    http://acm.hdu.edu.cn/showproblem.php?pid=2855 化简这个公式,多写出几组就会发现规律 d[n]=F[2*n] 后面的任务就是矩阵快速幂拍一个斐波那契模板出 ...

  4. HDU 2516 斐波那契博弈

    点这里去看题 n为斐波那契数时,先手败,推断方法见算法讲堂 #include<bits/stdc++.h> using namespace std; int main() { ],i,n, ...

  5. HDU 1021(斐波那契数与因子3 **)

    题意是说在给定的一种满足每一项等于前两项之和的数列中,判断第 n 项的数字是否为 3 的倍数. 斐波那契数在到第四十多位的时候就会超出 int 存储范围,但是题目问的是是否为 3 的倍数,也就是模 3 ...

  6. hdu 5914(斐波拉契数列)

    Triangle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Su ...

  7. HDU——4549M斐波那契数列(矩阵快速幂+快速幂+费马小定理)

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Total Su ...

  8. HDU 5686 斐波那契数列、Java求大数

    原题:http://acm.hdu.edu.cn/showproblem.php?pid=5686 当我们要求f[n]时,可以考虑为前n-1个1的情况有加了一个1. 此时有两种情况:当不适用第n个1进 ...

  9. HDU 1021 斐波那契

    参考自:https://www.cnblogs.com/ECJTUACM-873284962/p/6404504.html Fibonacci Again Time Limit: 2000/1000 ...

随机推荐

  1. 基础系列(6)—— C#类和对象

    一.类介绍       类(class)是C#类型中最基础的类型.类是一个数据结构,将状态(字段)和行为(方法和其他函数成员)组合在一个单元中.类提供了用于动态创建类实例的定义,也就是对象(objec ...

  2. Kotlint集合简单总结

    1.数组操作 var testArray = Array<>("s","ss")或者 = arrayOf("s","s ...

  3. phpcms 发布时间 更新 时间

  4. [历史百科]抗战时期兵团简介 From 百度知道

    中央军委1948年11月1日和1949年1月15日两次关于统一全军组织和部队番号的训令,我军先后进行了整编.西北野战军改称第一野战军,司令员兼政治委员彭德怀,第一副司令员张宗逊,第二副司令员赵寿山,参 ...

  5. jquery中的append功能相当于剪切的作用 将原来的元素剪切走

    jquery中的append功能相当于剪切的作用 将原来的元素剪切走

  6. iOS----MRC(手动内存管理)

    1.MRC是什么,有什么用? 在苹果开发中,我们是没有垃圾回收机制的.所以在ARC推出之前,我们苹果开发程序员需要通过手动代码的形式尽量严密的管理我们的App的内存: ---------------- ...

  7. BZOJ 3626 LCA(离线+树链剖分)

    首先注意到这样一个事实. 树上两个点(u,v)的LCA的深度,可以转化为先将u到根路径点权都加1,然后求v到根路径上的总点权值. 并且该题支持离线.那么我们可以把一个区间询问拆成两个前缀和形式的询问. ...

  8. Codeforces 748D Santa Claus and a Palindrome

    雅礼集训期间我好像考完试就开始划水了啊 给出k个长度相同的字符串,每个串有一个权值,选出一些串连成一个回文串.使得选中的串的总权值最大. 如果选一个串,必须同时选一个对称的串.还有一个特殊情况是可以在 ...

  9. day06 小数据池和编码

    一. 上次课内容回顾字典:由{}括起来. 每个元素用逗号隔开, key:value的形式存储数据key: 不可变的. 可哈希的.增删改查:1. 增加: 直接用新key来赋值. dict[key] = ...

  10. ACID和CAP, BASE

      ACID:关系型数据库中事务的4个属性:   Atomicity,原子性,整个事务的所有操作,要么全部完成,要么全部不完成,不可能停滞在中间的某个环节.事务在执行过程中出错,会回滚到事务开始前的状 ...