Thanks a lot for helping Harry Potter in finding the Sorcerer's Stone of Immortality in October. Did we not tell you that it was just an online game ? uhhh! now here is the real onsite task for Harry. You are given a magrid S ( a magic grid ) having R rows and C columns. Each cell in this magrid has either a Hungarian horntail dragon that our intrepid hero has to defeat, or a flask of magic potion that his teacher Snape has left for him. A dragon at a cell (i,j) takes away |S[i][j]| strength points from him, and a potion at a cell (i,j) increases Harry's strength by S[i][j]. If his strength drops to 0 or less at any point during his journey, Harry dies, and no magical stone can revive him.

Harry starts from the top-left corner cell (1,1) and the Sorcerer's Stone is in the bottom-right corner cell (R,C). From a cell (i,j), Harry can only move either one cell down or right i.e., to cell (i+1,j) or cell (i,j+1) and he can not move outside the magrid. Harry has used magic before starting his journey to determine which cell contains what, but lacks the basic simple mathematical skill to determine what minimum strength he needs to start with to collect the Sorcerer's Stone. Please help him once again.

Input (STDIN):

The first line contains the number of test cases T. T cases follow. Each test case consists of R C in the first line followed by the description of the grid in R lines, each containing C integers. Rows are numbered 1 to R from top to bottom and columns are numbered 1 to C from left to right. Cells with S[i][j] < 0 contain dragons, others contain magic potions.

Output (STDOUT):

Output T lines, one for each case containing the minimum strength Harry should start with from the cell (1,1) to have a positive strength through out his journey to the cell (R,C).

Constraints:

1 ≤ T ≤ 5

2 ≤ R, C ≤ 500

-10^3 ≤ S[i][j] ≤ 10^3

S[1][1] = S[R][C] = 0

Sample Input:

3
2 3
0 1 -3
1 -2 0
2 2
0 1
2 0
3 4
0 -2 -3 1
-1 4 0 -2
1 -2 -3 0

Sample Output:

2
1
2

Explanation:

Case 1 : If Harry starts with strength = 1 at cell (1,1), he cannot maintain a positive strength in any possible path. He needs at least strength = 2 initially.

Case 2 : Note that to start from (1,1) he needs at least strength = 1.

题意:给出了你一个n*m的矩阵,矩阵的元素有正有负,第一个元素和最后一个元素均为0,你从第一个元素开始,每次只能从当前位置向下或向右走一格,走到哪一个元素,你的点数就加上这个元素,在走的途中,你的点数不能小于等于0,问你走到右下角最后一个元素,最少需要初始点数多少,能够让你的点数一直大于0?

思路:一开始想的都是用DFS搜索最佳路径,但是n和m是1-500,限制时间336ms,肯定超时,所以这道题可以用DP来写。声明一个数组dp【i】【j】,它表示你走到第i行第j列时至少还要剩下多少点数。然后每个位置的dp值都必须大于等于1,因为点数为0就代表游戏结束了。dp数组要从最后一个元素往前推,因为你当前要剩多少点数,是由你后面要花多少点数来决定的,所以初始化最后一个元素dp【n】【m】为1。先推最后一行和最后一列,因为如果你走到了最后一列,那接下来你只能往下走了,而走到了最后一行,你只能往右走。最后一行的递推公式是dp[i][m] = max(1,dp[i+1][m] - map[i][m]),它表示你走到下一步需要剩下dp【i+1】【m】的点数,那你现在要剩下的点数就是你下一步需要的点数加上你这一步的消耗,或者是减去你这一步可以得到的点数;但是,你剩下的点数不能小于1,所以就有了上面的公式。最后一列的公式相似。而重点的1-(n-1)行的公式有些不同,这里的点可以走两条路,下或右,选择哪一条呢?当然是可以不用剩太多点数的那一条,因为此题的目的就是怎样让所需点数最少,所以被减数越小,结果越小,就有了公式dp[i][j] = max(1,min(dp[i+1][j], dp[i][j+1]) - map[i][j]);下面看代码:

 #include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<string>
#include<cmath>
#include<algorithm>
#include<stack>
#include<queue>
#define ll long long
#define inf 0x3f3f3f3f
#define pi 3.141592653589793238462643383279
using namespace std;
int t,n,m,map[][],dp[][];
int main()
{
cin>>t;
while(t--)
{
cin>>n>>m;
for(int i=; i<=n; ++i)
for(int j=; j<=m;++j)
scanf("%d",&map[i][j]); dp[n][m] = ;
for(int i=n-; i>=; --i)
dp[i][m] = max(,dp[i+][m] - map[i][m]); //逆推最后一列的dp值 for(int i=m-; i>=; --i)
dp[n][i] = max(,dp[n][i+] - map[n][i]); //逆推最后一行的dp值 for(int i=n-; i>=; --i)
for(int j=m-; j>=; --j)
dp[i][j] = max(,min(dp[i+][j], dp[i][j+]) - map[i][j]); //逆推剩余点的dp值
//只能先推最后一行和最后一列,因为dp值的推导必须是连续的,你当前的dp值必须由已经知晓的dp值推出
cout<<dp[][]<<endl;
}
return ;
}

SPOJ - AMR11A(DP)的更多相关文章

  1. LightOJ 1033 Generating Palindromes(dp)

    LightOJ 1033  Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...

  2. lightOJ 1047 Neighbor House (DP)

    lightOJ 1047   Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...

  3. UVA11125 - Arrange Some Marbles(dp)

    UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...

  4. 【POJ 3071】 Football(DP)

    [POJ 3071] Football(DP) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4350   Accepted ...

  5. 初探动态规划(DP)

    学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...

  6. Tour(dp)

    Tour(dp) 给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数.请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外 ...

  7. 2017百度之星资格赛 1003:度度熊与邪恶大魔王(DP)

    .navbar-nav > li.active > a { background-image: none; background-color: #058; } .navbar-invers ...

  8. Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)

    Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...

  9. 最长公共子序列长度(dp)

    /// 求两个字符串的最大公共子序列长度,最长公共子序列则并不要求连续,但要求前后顺序(dp) #include <bits/stdc++.h> using namespace std; ...

随机推荐

  1. bash中常用的快捷键

    常用快捷键 ctrl+c 强制终止当前命令 ctrl+l 清屏(clear) ctrl+a 光标移动到命令行行首 ctrl+e 光标移动到命令行行尾 ctrl+u 从光标所在位置删除到行首 ctrl+ ...

  2. PHP如何知道一个类中所有的方法

    当我们使用一个类时既没有源码也没有文档时(尤其是php扩展提供的类,比如mysqli,Redis类),我们该怎么知道这个类中提供了哪些方法,以及每个方法该怎么使用呢,此时就该PHP中强大的反射登场了, ...

  3. mysql数据库忘记密码时如何登录

    1.打开cmd命令提示符,进入上一步mysql.exe所在的文件夹即: 2.输入命令  mysqld --skip-grant-tables  回车,此时就跳过了mysql的用户验证 3.然后直接输入 ...

  4. Python入门——import

    最近身边的人或多或少都知道一点python,自己也想动手试试吧.按照网上的教程,安装了python,Eclipse插件pydev.接下来就是在Eclipse下新建工程,创建py文件这就不多说了. 第一 ...

  5. PHP函数内访问全局变量

    $dbcon='123'; 方法一.funtion fun1(){global $dbcon;$dbcon-> 就可以访问了.} 方法二$GLOBALS['$dbcon'];

  6. iOS学习之WebView的使用

    1.使用UIWebView加载网页 运行XCode 4.3,新建一个Single View Application,命名为WebViewDemo. 2.加载WebView 在ViewControlle ...

  7. minio test

    docker pull minio/minio docker run --name=minio -d  -p 9001:9000 minio/minio server /data https://do ...

  8. CG中的类型

    [Matrix] 通常像下面这样定义Matrix: int1x1 iMatrix; // integer matrix with 1 row, 1 column int4x1 iMatrix; // ...

  9. 设置WebBrowser内核渲染模式

    前不久开发一个项目,是采用WebBrowser作为外壳,加载网页,由于网页是采用html5来进行开发的,当通过WebBrowser加载网页后,html5中的特性 都无法正常显示,而通过ie浏览器打开时 ...

  10. unity与android交互总结

    http://www.jianshu.com/p/4739ce2f4cd1 http://www.cnblogs.com/suoluo/p/5443889.html http://www.th7.cn ...