为了解决在深度神经网络训练初期降低梯度消失/爆炸问题,Sergey loffe和Christian Szegedy提出了使用批量归一化的技术的方案,该技术包括在每一层激活函数之前在模型里加一个操作,简单零中心化和归一化输入,之后再通过每层的两个新参数(一个缩放,另一个移动)缩放和移动结果,话句话说,这个操作让模型学会最佳模型和每层输入的平均值

批量归一化原理

(1)\(\mu_B = \frac{1}{m_B}\sum_{i=1}^{m_B}x^{(i)}\) #经验平均值,评估整个小批量B

(2)\(\theta_B = \frac{1}{m_B}\sum_{i=1}^{m_b}(x^{(i)} - \mu_B)^2\) #评估整个小批量B的方差

(3)\(x_{(i)}^* = \frac{x^{(i)} - \mu_B}{\sqrt{\theta_B^2+\xi}}\)#零中心化和归一化

(4)\(z^{(i)} = \lambda x_{(i)}^* + \beta\)#将输入进行缩放和移动

在测试期间,没有小批量的数据来计算经验平均值和标准方差,所有可以简单地用整个训练集的平均值和标准方差来代替,在训练过程中可以用变动平均值有效计算出来

但是,批量归一化的确也给模型增加了一些复杂度和运行代价,使得神经网络的预测速度变慢,所以如果逆需要快速预测,可能需要在进行批量归一化之前先检查以下ELU+He初始化的表现如何

tf.layers.batch_normalization使用

函数原型

def batch_normalization(inputs,
axis=-1,
momentum=0.99,
epsilon=1e-3,
center=True,
scale=True,
beta_initializer=init_ops.zeros_initializer(),
gamma_initializer=init_ops.ones_initializer(),
moving_mean_initializer=init_ops.zeros_initializer(),
moving_variance_initializer=init_ops.ones_initializer(),
beta_regularizer=None,
gamma_regularizer=None,
beta_constraint=None,
gamma_constraint=None,
training=False,
trainable=True,
name=None,
reuse=None,
renorm=False,
renorm_clipping=None,
renorm_momentum=0.99,
fused=None,
virtual_batch_size=None,
adjustment=None):

使用注意事项

(1)使用batch_normalization需要三步:

a.在卷积层将激活函数设置为None
b.使用batch_normalization
c.使用激活函数激活 例子:
inputs = tf.layers.dense(inputs,self.n_neurons,
kernel_initializer=self.initializer,
name = 'hidden%d'%(layer+1))
if self.batch_normal_momentum:
inputs = tf.layers.batch_normalization(inputs,momentum=self.batch_normal_momentum,train=self._training) inputs = self.activation(inputs,name = 'hidden%d_out'%(layer+1))

(2)在训练时,将参数training设置为True,在测试时,将training设置为False,同时要特别注意update_ops的使用

update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
需要在每次训练时更新,可以使用sess.run(update_ops)
也可以:
with tf.control_dependencies(update_ops):
train_op = tf.train.AdamOptimizer(learning_rate).minimize(loss)

使用mnist数据集进行简单测试

from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import numpy as np
mnist = input_data.read_data_sets('MNIST_data',one_hot=True)
x_train,y_train = mnist.train.images,mnist.train.labels
x_test,y_test = mnist.test.images,mnist.test.labels
Extracting MNIST_data\train-images-idx3-ubyte.gz
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
he_init = tf.contrib.layers.variance_scaling_initializer()
def dnn(inputs,n_hiddens=1,n_neurons=100,initializer=he_init,activation=tf.nn.elu,batch_normalization=None,training=None):
for layer in range(n_hiddens):
inputs = tf.layers.dense(inputs,n_neurons,kernel_initializer=initializer,name = 'hidden%d'%(layer+1))
if batch_normalization is not None:
inputs = tf.layers.batch_normalization(inputs,momentum=batch_normalization,training=training)
inputs = activation(inputs,name = 'hidden%d'%(layer+1))
return inputs
tf.reset_default_graph()
n_inputs = 28*28
n_hidden = 100
n_outputs = 10 X = tf.placeholder(tf.float32,shape=(None,n_inputs),name='X')
Y = tf.placeholder(tf.int32,shape=(None,n_outputs),name='Y') training = tf.placeholder_with_default(False,shape=(),name='tarining')
dnn_outputs = dnn(X) logits = tf.layers.dense(dnn_outputs,n_outputs,kernel_initializer = he_init,name='logits')
y_proba = tf.nn.softmax(logits,name='y_proba')
xentropy = tf.nn.softmax_cross_entropy_with_logits(labels=Y,logits=y_proba)
loss = tf.reduce_mean(xentropy,name='loss')
train_op = tf.train.AdamOptimizer(learning_rate=0.01).minimize(loss) correct = tf.equal(tf.argmax(Y,1),tf.argmax(y_proba,1))
accuracy = tf.reduce_mean(tf.cast(correct,tf.float32)) epoches = 20
batch_size = 100
np.random.seed(42) init = tf.global_variables_initializer()
rnd_index = np.random.permutation(len(x_train))
n_batches = len(x_train) // batch_size
with tf.Session() as sess:
sess.run(init)
for epoch in range(epoches):
for batch_index in np.array_split(rnd_index,n_batches):
x_batch,y_batch = x_train[batch_index],y_train[batch_index]
feed_dict = {X:x_batch,Y:y_batch,training:True}
sess.run(train_op,feed_dict=feed_dict)
loss_val,accuracy_val = sess.run([loss,accuracy],feed_dict={X:x_test,Y:y_test,training:False})
print('epoch:{},loss:{},accuracy:{}'.format(epoch,loss_val,accuracy_val))

批量归一化batch_normalization的更多相关文章

  1. 第十八节,TensorFlow中使用批量归一化(BN)

    在深度学习章节里,已经介绍了批量归一化的概念,详情请点击这里:第九节,改善深层神经网络:超参数调试.正则化以优化(下) 神经网络在进行训练时,主要是用来学习数据的分布规律,如果数据的训练部分和测试部分 ...

  2. TensorFlow——批量归一化操作

    批量归一化 在对神经网络的优化方法中,有一种使用十分广泛的方法——批量归一化,使得神经网络的识别准确度得到了极大的提升. 在网络的前向计算过程中,当输出的数据不再同一分布时,可能会使得loss的值非常 ...

  3. 深度学习面试题21:批量归一化(Batch Normalization,BN)

    目录 BN的由来 BN的作用 BN的操作阶段 BN的操作流程 BN可以防止梯度消失吗 为什么归一化后还要放缩和平移 BN在GoogLeNet中的应用 参考资料 BN的由来 BN是由Google于201 ...

  4. Batch Normalization批量归一化

    BN的深度理解:https://www.cnblogs.com/guoyaohua/p/8724433.html BN: BN的意义:在激活函数之前将输入归一化到高斯分布,控制到激活函数的敏感区域,避 ...

  5. 从头学pytorch(十九):批量归一化batch normalization

    批量归一化 论文地址:https://arxiv.org/abs/1502.03167 批量归一化基本上是现在模型的标配了. 说实在的,到今天我也没搞明白batch normalize能够使得模型训练 ...

  6. 机器学习(ML)十三之批量归一化、RESNET、Densenet

    批量归一化 批量归一化(batch normalization)层,它能让较深的神经网络的训练变得更加容易.对图像处理的输入数据做了标准化处理:处理后的任意一个特征在数据集中所有样本上的均值为0.标准 ...

  7. [ DLPytorch ] 批量归一化与残差网络

    批量归一化 通常来说,数据标准化预处理对于浅层模型就足够有效了.随着模型训练的进行,当每层中参数更新时,靠近输出层的输出较难出现剧烈变化.但对深层神经网络来说,即使输入数据已做标准化,训练中模型参数的 ...

  8. 【python实现卷积神经网络】批量归一化层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  9. L18 批量归一化和残差网络

    批量归一化(BatchNormalization) 对输入的标准化(浅层模型) 处理后的任意一个特征在数据集中所有样本上的均值为0.标准差为1. 标准化处理输入数据使各个特征的分布相近 批量归一化(深 ...

随机推荐

  1. eclipse创建文件package,source folder和folder区别及相互转换

    原文:http://blog.csdn.net/u014079773/article/details/66973910 https://www.cnblogs.com/shihaiming/p/735 ...

  2. SSH两种验证方式原理

    本帖转自 http://www.cnblogs.com/hukey/p/6248468.html SSH验证方式有两种,分别为用户密码认证以及密钥认证. 1.用户密码认证方式 说明: (1) 当客户端 ...

  3. zabbix自动化运维学习笔记(服务器安装)

    最近博主开始接触自动化运维.首先就是zabbix这个开源的监控系统 一开始博主只是在自己的虚拟机上尝试安装.最后终于开始在公司的服务器上正式安装,教程博主也是通过度娘找的 这是原文:链接 安装环境:C ...

  4. linux入门总结

    linux的核心概念知识:     linux软件是开源免费的,而linux是由Unix演变而成,Unix是由MINIX演变而成. 2000年以后,linux系统日趋成熟,涌现大量基于linux服务平 ...

  5. 重新学习MySQL数据库7:详解MyIsam与InnoDB引擎的锁实现

    重新学习Mysql数据库7:详解MyIsam与InnoDB引擎的锁实现 说到锁机制之前,先来看看Mysql的存储引擎,毕竟不同的引擎的锁机制也随着不同. 三类常见引擎: MyIsam :不支持事务,不 ...

  6. 数据挖掘之Python调用R包、函数、脚本

    Python中集成R :参考博客http://blog.csdn.net/weidelight/article/details/44946785

  7. 清华大学 pip 源

    pypi 镜像使用帮助 pypi 镜像每 5 分钟同步一次. 临时使用 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple some-pac ...

  8. 【hive】多表插入

    from or_table insert overwrite table1 name1 select … insert into table2 name2 select … 注意:select 后边不 ...

  9. hdu 6092 Rikka with Subset(逆向01背包+思维)

    Rikka with Subset Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  10. RabbitMQ(3) Java客户端使用

    RabbitMQ针对不同的开发语言(java,python,c/++,Go等等),提供了丰富对客户端,方便使用.就Java而言,可供使用的客户端有RabbitMQ Java client. Rabbi ...