2019ICPC南昌邀请赛网络赛 I. Max answer (单调栈+线段树/笛卡尔树)
题意:求一个序列的最大的(区间最小值*区间和)
线段树做法:用单调栈求出每个数两边比它大的左右边界,然后用线段树求出每段区间的和sum、最小前缀lsum、最小后缀rsum,枚举每个数a[i],设以a[i]为最小值的区间为[l,r]
若a[i]>0,则最优解就是a[i]*([l,r]的区间和),因为[l,r]上的数都比a[i]大。
若a[i]<0,则最优解是a[i]*([l,i-1]上的最小后缀+a[i]+[i+1,r]上的最小前缀),在线段树上查询即可。
复杂度$O(nlogn)$
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=5e5+,inf=0x3f3f3f3f;
int a[N],n,sta[N],L[N],R[N],tp;
#define ls (u<<1)
#define rs (u<<1|1)
#define mid ((l+r)>>1)
struct D {ll sum,lsum,rsum;} s[N<<];
D mg(D a,D b) {
D t= {,};
t.sum=a.sum+b.sum;
t.lsum=min(a.lsum,a.sum+b.lsum);
t.rsum=min(b.rsum,b.sum+a.rsum);
return t;
}
void build(int u=,int l=,int r=n) {
if(l==r) {s[u].sum=a[l],s[u].lsum=min((ll)a[l],0ll),s[u].rsum=min((ll)a[l],0ll); return;}
build(ls,l,mid),build(rs,mid+,r),s[u]=mg(s[ls],s[rs]);
}
void qry(int L,int R,D& x,int u=,int l=,int r=n) {
if(l>=L&&r<=R) {x=mg(x,s[u]); return;}
if(l>R||r<L)return;
qry(L,R,x,ls,l,mid),qry(L,R,x,rs,mid+,r);
}
int main() {
scanf("%d",&n);
a[]=a[n+]=~inf;
for(int i=; i<=n; ++i)scanf("%d",&a[i]);
sta[tp=]=;
for(int i=; i<=n; ++i) {
for(; a[sta[tp]]>=a[i]; --tp);
L[i]=sta[tp]+,sta[++tp]=i;
}
sta[tp=]=n+;
for(int i=n; i>=; --i) {
for(; a[sta[tp]]>=a[i]; --tp);
R[i]=sta[tp]-,sta[++tp]=i;
}
build();
ll ans=;
for(int i=; i<=n; ++i) {
if(a[i]>) {
D t= {,};
qry(L[i],R[i],t);
ans=max(ans,a[i]*t.sum);
} else if(a[i]<) {
ll x=;
D t= {,};
qry(L[i],i,t);
x+=t.rsum;
t= {,};
qry(i,R[i],t);
x+=t.lsum;
x-=a[i];
ans=max(ans,a[i]*x);
}
}
printf("%lld\n",ans);
return ;
}
笛卡尔树做法:对整个序列建立笛卡尔树,用和线段树相同的方法求出每个结点的子树所代表区间的sum,lsum,rsum,枚举每个结点,如果是正数则乘上该结点的sum,如果是负数则乘上该结点的(左儿子的rsum+右儿子的lsum+结点本身的值)即可。
复杂度$O(n)$
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=5e5+,inf=0x3f3f3f3f;
int n,a[N],ls[N],rs[N],sta[N],tp;
ll sum[N],lsum[N],rsum[N];
void build() {
a[n+]=~inf,sta[tp=]=n+;
for(int i=; i<=n; ++i) {
for(; a[i]<a[sta[tp]]; --tp);
ls[i]=rs[sta[tp]],rs[sta[tp]]=i,sta[++tp]=i;
}
}
void dfs(int u) {
if(!u)return;
dfs(ls[u]),dfs(rs[u]);
sum[u]=sum[ls[u]]+a[u]+sum[rs[u]];
lsum[u]=min(lsum[ls[u]],sum[ls[u]]+a[u]+lsum[rs[u]]);
rsum[u]=min(rsum[rs[u]],sum[rs[u]]+a[u]+rsum[ls[u]]);
}
int main() {
scanf("%d",&n);
for(int i=; i<=n; ++i)scanf("%d",&a[i]);
build(),dfs(rs[n+]);
ll ans=;
for(int i=; i<=n; ++i) {
if(a[i]>)ans=max(ans,a[i]*sum[i]);
else if(a[i]<)ans=max(ans,a[i]*(rsum[ls[i]]+a[i]+lsum[rs[i]]));
}
printf("%lld\n",ans);
return ;
}
2019ICPC南昌邀请赛网络赛 I. Max answer (单调栈+线段树/笛卡尔树)的更多相关文章
- 计蒜客 38228. Max answer-线段树维护单调栈(The Preliminary Contest for ICPC China Nanchang National Invitational I. Max answer 南昌邀请赛网络赛) 2019ICPC南昌邀请赛网络赛
Max answer Alice has a magic array. She suggests that the value of a interval is equal to the sum of ...
- 南昌邀请赛I.Max answer 单调栈+线段树
题目链接:https://nanti.jisuanke.com/t/38228 Alice has a magic array. She suggests that the value of a in ...
- 网络赛 I题 Max answer 单调栈+线段树
题目链接:https://nanti.jisuanke.com/t/38228 题意:在给出的序列里面找一个区间,使区间最小值乘以区间和得到的值最大,输出这个最大值. 思路:我们枚举每一个数字,假设是 ...
- The Preliminary Contest for ICPC China Nanchang National Invitational I. Max answer (单调栈+线段树)
题目链接:https://nanti.jisuanke.com/t/38228 题目大意:一个区间的值等于该区间的和乘以区间的最小值.给出一个含有n个数的序列(序列的值有正有负),找到该序列的区间最大 ...
- 2019南昌邀请赛网络预选赛 I. Max answer(单调栈+暴力??)
传送门 题意: 给你你一序列 a,共 n 个元素,求最大的F(l,r): F(l,r) = (a[l]+a[l+1]+.....+a[r])*min(l,r); ([l,r]的区间和*区间最小值,F( ...
- 南昌邀请赛网络赛 D.Match Stick Game(dp)
南昌邀请赛网络赛 D.Match Stick Game 题目传送门 题目就会给你一个长度为n的字符串,其中\(1<n<100\).这个字符串是一个表达式,只有加减运算符,然后输入的每一个字 ...
- icpc 南昌邀请赛网络赛 Max answer
就是求区间和与区间最小值的积的最大值 但是a[i]可能是负的 这就很坑 赛后看了好多dalao的博客 终于a了 这个问题我感觉可以分为两个步骤 第一步是对于每个元素 以它为最小值的最大区间是什么 第二 ...
- 南昌网络赛 I. Max answer 单调栈
Max answer 题目链接 https://nanti.jisuanke.com/t/38228 Describe Alice has a magic array. She suggests th ...
- 南昌网络赛 I. Max answer (单调栈 + 线段树)
https://nanti.jisuanke.com/t/38228 题意给你一个序列,对于每个连续子区间,有一个价值,等与这个区间和×区间最小值,求所有子区间的最大价值是多少. 分析:我们先用单调栈 ...
随机推荐
- Python学习札记(四) Basic-1
参考:Python基础 Basic 1.以#开头的是注释. 2.解释器把每一行都当做是一个语句,当语句以冒号:结尾时,缩进的语句视为代码块. 3.请使用4个空格作为缩进,慎用Tab(请把Tab设置为4 ...
- Git出现fatal: Unable to find remote helper for 'https'
使用Git远程获取代码 git clone https://github.com/twlkyao/findfile.git 出现“fatal: Unable to find remote helper ...
- ELK 6.x 部署
Elasticsearch版本:6.3.2 Kibana版本:6.3.2 1.es安装 按照官方提示操作即可. 通过yum安装或者下载tar包解压. 安装完成之后,需要修改一些配置 ①修改文件 /et ...
- SOA和SaaS的区别
SOA,Service Oriented ArchITecture,面向服务的架构 SaaS,Software as a Service https://blog.csdn.net/chenyi888 ...
- thinkphp 模板中得到controller name,得到当前文件路径
<li><a href="/Admin/account" <eq name="Think.CONTROLLER_NAME" value= ...
- PHP 重载方法 __call()
__call() 方法用于监视错误的方法调用. __call()(Method overloading) 为了避免当调用的方法不存在时产生错误,可以使用 __call() 方法来避免.该方法在调用的方 ...
- Linux命令详解-hwclock/chock
hwclock命令可以用来显示/设置硬件时钟命令. 在Linux中有硬件时钟与系统时钟等两种时钟.硬件时钟是指主机板上的时钟设备,也就是通常可在BIOS画面设定的时钟.系统时钟则是指kernel中 的 ...
- 提高java反射速度的方法method.setAccessible(true)
转载:http://huoyanyanyi10.iteye.com/blog/1317614 提高java反射速度的方法method.setAccessible(true) package com.c ...
- Prism 4 文档 ---第8章 导航
作为同用户具有丰富的交互的客户端应用程序,它的用户界面(UI)将会持续不断的更新来反映用户工作的当前的任务和数据.用户界面可以进行一段时间相当大的变化作为用户交互的应用程序中完成各种任务.通过 ...
- Redis数据结构:链表
链表被广泛用于Redis的各种功能,比如列表键.发布与订阅.慢查询.监视器等. 每个链表节点由一个listNode结构表示,每个节点都有前置节点和后置节点. 每个链表使用一个list结构来表示,这个结 ...