Description

算法复杂度一般分为:时间复杂度、空间复杂度、编程复杂度。 这三个复杂度本身是矛盾体,不能一味地追求降低某一复杂度,否则会带来其他复杂度的增加。在权衡各方面的情况下,降低时间复杂度成为本课程学习的重点之一。 请计算下面几个程序段的复杂程度,分别用1、logn、n、nlogn、n^2、n^3或2^n来表示

程序片段1:
x=x+1;
程序片段2:
for(k=1;k<=n;k++)
{
x=x+1;
}

程序片段3: for(k=1,t=1;k<=n;k++) { t=t*2; for(j=1;j<=t;j++) x=x+j; } 程序片段4: for(k=1;k<=n;k++) { for(j=1;j<=k;j++) x=x+j; } 程序片段5: m=0; for(k=1,t=1;k<=n;k++) { t=t*2; for(j=t;j<=n;j++) m++; } 程序片段6: m=0; for(k=1;k<=n;k++) { for(j=1;j<=n;j++) m++; } 程序片段7: m=0; for(k=1;k<=n;k++) { for(j=1;j<=n;j++) for(i=1;i<=n;i++) m++; }

Input

多组测试数据,首先在第一行输入整数T表示提问次数 然后是n行,每行是1个整数,表示程序片段号

Output

对于每次提问,在1行输出对应程序片段对应的复杂程度(注意必须按前面提示的输出,注意大小写

Sample Input

2
1
2

Sample Output

1
n
#include<stdio.h>
int main(void)
{
int t,m;
while(scanf("%d",&t)!=EOF)
{
while(t--)
{
scanf("%d",&m);
if(m==)
printf("1\n");
if(m==)
printf("n\n");
if(m==)
printf("2^n\n");
if(m==)
printf("n^2\n");
if(m==)
printf("nlogn\n");
if(m==)
printf("n^2\n");
if(m==)
printf("n^3\n");
}
}
return ;
}
#include <stdio.h>
int main()
{
int m,n;
while(scanf("%d",&n)!=EOF)
while(n--)
{
scanf("%d",&m);
switch(m)
{
case :printf("1\n");break;
case :printf("n\n");break;
case :printf("2^n\n");break;
case :printf("n^2\n");break;
case :printf("nlogn\n");break;
case :printf("n^2\n");break;
case :printf("n^3\n");break;
}
}
return ;
}

Problem B: 深入浅出学算法003-计算复杂度的更多相关文章

  1. Problem E: 深入浅出学算法019-求n的阶乘

    Problem E: 深入浅出学算法019-求n的阶乘 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 5077  Solved: 3148 Descrip ...

  2. Problem D: 深入浅出学算法005-数7

    Description 逢年过节,三五好友,相约小聚,酒过三旬,围桌数七. “数七”是一个酒桌上玩的小游戏.就是按照顺序,某人报一个10以下的数字,然后后面的人依次在原来的数字上加1,并喊出来,当然如 ...

  3. Problem H: 深入浅出学算法009-韩信点兵

    Description 秦朝末年,楚汉相争.有一次,韩信将1500名将士与楚王大将李锋交战.苦战一场,楚军不敌,败退回营,汉军也死伤四五百人,于是,韩信整顿兵马也返回大本营.当行至一山坡,忽有后军来报 ...

  4. Problem G: 深入浅出学算法008-求佩尔方程的解

    Description 求关于x y的二次不定方程的解 x2-ny2=1 Input 多组输入数据,先输入组数T 然后输入正整数n(n<=100) Output 对于每组数据输出一行,求y< ...

  5. Problem F: 深入浅出学算法007-统计求和

    Description 求含有数字a且不能被a整除的4位整数的个数,并求这些整数的和 Input 多组测试数据,先输入整数T表示组数然后每组输入1个整数a(1<=a<=9) Output ...

  6. Problem E: 深入浅出学算法006-求不定方程的所有解

    Description 现有一方程ax+by=c,其中系数a.b.c均为整数,求符合条件的所有正整数解,要求按x由小到大排列,其中a b c 均为不大于1000的正整数 Input 多组测试数据,第一 ...

  7. Problem C: 深入浅出学算法004-求多个数的最小公倍数

    Description 求n个整数的最小公倍数 Input 多组测试数据,先输入整数T表示组数 然后每行先输入1个整数n,后面输入n个整数k1 k2...kn Output 求k1 k2 ...kn的 ...

  8. Problem A: 深入浅出学算法002-n个1

    Description 由n个1组成的整数能被K(K<10000)整除,n至少为多少? Input 多组测试数据,第一行输入整数T,表示组数 然后是T行,每行输入1个整数代表K Output 对 ...

  9. Problem A: 深入浅出学算法022-汉诺塔问题II

    #include<stdio.h> void hanio(int n,char a,char b,char c) { ) printf("%c->%c\n",a, ...

随机推荐

  1. 天梯赛 L2-012 关于堆的判断 (二叉树)

    将一系列给定数字顺序插入一个初始为空的小顶堆H[].随后判断一系列相关命题是否为真.命题分下列几种: "x is the root":x是根结点: "x and y ar ...

  2. scrapy爬虫框架介绍

    一 介绍 Scrapy一个开源和协作的框架,其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的,使用它可以以快速.简单.可扩展的方式从网站中提取所需的数据.但目前Scrapy的用途十分广泛,可 ...

  3. 大数加法(SDUT“斐波那契”串)4335

    题目链接:https://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Contest/contestproblem/cid/2697/pid/4335.ht ...

  4. Three.js基础探寻五——正二十面体、圆环面等

    除了立方体.平面.球体,Three.js还提供了很多其他几何形状. 1.圆形 CircleGeometry可以创建圆形或者扇形: THREE.CircleGeometry(radius, segmen ...

  5. MongoDB之conf配置文件详解(五)

    详细看一下mongodb配置文件. mongodb.conf # mongodb.conf # 数据库文件位置 dbpath=/var/lib/mongodb #日志文件的路径 logpath=/va ...

  6. rabbitmq和kafka怎么选?【转】

    MQ框架非常之多,今天简单说一下有代表性的两个MQ(rabbitmq和kafka).经常会有人问rabbitmq和kafka到底哪个好呢?其实没有好与不好之分,只有哪个更合适,首先要根据自己项目的业务 ...

  7. 141.Linked List Cycle---双指针

    题目链接 题目大意:给出一个链表,判断该链表是否有环,空间复杂度最好控制在o(1) 这个题没有给测试用例,导致没太明白题目意思,看了题解,用了两种方法示例如下: 法一(借鉴):利用两个指针,一个指针步 ...

  8. 72.Edit Distance---dp

    题目链接:https://leetcode.com/problems/edit-distance/description/ 题目大意:找出两个字符串之间的编辑距离(每次变化都只消耗一步). 法一(借鉴 ...

  9. caffe Python API 之图片预处理

    # 设定图片的shape格式为网络data层格式 transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) ...

  10. 《深入理解Java虚拟机》笔记--第十二章、Java内存模型与线程

    主要内容:虚拟机如何实现多线程.多线程之间由于共享和竞争数据而导致的一系列问题及解决方案. Java内存模型:     Java内存模型的主要目标是定义程序中各个变量的访问规则,即在虚拟机中将变量存储 ...