「2017 山东一轮集训 Day4」基因
设置 \(\sqrt{n}\) 个关键点,维护出关键点到每个右端点之间的答案以及Pam的左指针,每次暴力向左插入元素即可,为了去重,还需要记录一下Pam上每个节点在每个关键点为左端点插入到时候到最左边出现位置,总复杂度 \(O(n\sqrt{n})\)。
/*program by mangoyang*/
#pragma GCC optimize("Ofast", "inline")
#include<bits/stdc++.h>
#define inf ((int)(1e9))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int f = 0, ch = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
const int N = 100005;
char s[N];
namespace PAM{
int fa[N], ch[N][26], trans[N][26], len[N], size, tail, head;
inline void init(){
fa[0] = 1, len[1] = -1, tail = head = size = 1;
for(int i = 0; i < 26; i++) trans[0][i] = 1;
}
inline int newnode(int x){ return len[++size] = x, size; }
inline void pushback(int l, int r){
int c = s[r] - 'a', p = tail;
while(r - len[p] - 1 < l || s[r-len[p]-1] != s[r]) p = fa[p];
if(!ch[p][c]){
int np = newnode(len[p] + 2); fa[np] = ch[trans[p][c]][c];
memcpy(trans[np], trans[fa[np]], sizeof(trans[np]));
trans[np][s[r-len[fa[np]]]-'a'] = fa[np], ch[p][c] = np;
}
tail = ch[p][c];
if(len[tail] == r - l + 1) head = tail;
}
inline void pushfront(int l, int r){
int c = s[l] - 'a', p = head;
while(l + len[p] + 1 > r || s[l+len[p]+1] != s[l]) p = fa[p];
if(!ch[p][c]){
int np = newnode(len[p] + 2); fa[np] = ch[trans[p][c]][c];
memcpy(trans[np], trans[fa[np]], sizeof(trans[np]));
trans[np][s[l+len[fa[np]]]-'a'] = fa[np], ch[p][c] = np;
}
head = ch[p][c];
if(len[head] == r - l + 1) tail = head;
}
}
int bel[N], pos[700][N], pre[700][N], ans[700][N], ti[N], n, type, Q, Ans, tim;
int main(){
read(type), read(n), read(Q);
scanf("%s", s + 1);
int S = (int) min(n, 150), block = (n / S) + (n % S > 0);
PAM::init();
for(int i = 1; i <= n; i++) bel[i] = (i - 1) / S + 1;
for(int i = 1; i <= block; i++){
PAM::tail = PAM::head = 1, ++tim;
for(int j = (i - 1) * S + 1; j <= n; j++){
PAM::pushback((i - 1) * S + 1, j);
if(ti[PAM::tail] != tim) {
ti[PAM::tail] = tim, pos[i][PAM::tail] = j, ans[i][j]++;
}
ans[i][j] += ans[i][j-1], pre[i][j] = PAM::head;
}
}
while(Q--){
int l, r; read(l), read(r);
l ^= Ans * type, r ^= Ans * type, ++tim;
if(bel[l] == bel[r]){
PAM::head = PAM::tail = 1, Ans = 0;
for(int i = l; i <= r; i++){
PAM::pushback(l, i);
if(ti[PAM::tail] != tim) ti[PAM::tail] = tim, Ans++;
}
printf("%d\n", Ans); continue;
}
int c = bel[l] + 1;
PAM::head = pre[c][r], Ans = ans[c][r];
for(int i = (c - 1) * S; i >= l; i--){
PAM::pushfront(i, r);
if(ti[PAM::head] != tim){
ti[PAM::head] = tim;
if(!pos[c][PAM::head] || pos[c][PAM::head] > r) Ans++;
}
}
printf("%d\n", Ans);
}
return 0;
}
「2017 山东一轮集训 Day4」基因的更多相关文章
- Loj #6069. 「2017 山东一轮集训 Day4」塔
Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...
- Loj 6068. 「2017 山东一轮集训 Day4」棋盘
Loj 6068. 「2017 山东一轮集训 Day4」棋盘 题目描述 给定一个 $ n \times n $ 的棋盘,棋盘上每个位置要么为空要么为障碍.定义棋盘上两个位置 $ (x, y),(u, ...
- loj6068. 「2017 山东一轮集训 Day4」棋盘 二分图,网络流
loj6068. 「2017 山东一轮集训 Day4」棋盘 链接 https://loj.ac/problem/6068 思路 上来没头绪,后来套算法,套了个网络流 经典二分图 左边横,右边列 先重新 ...
- 「2017 山东一轮集训 Day4」棋盘(费用流)
棋盘模型 + 动态加边 #include<cstdio> #include<algorithm> #include<iostream> #include<cs ...
- [LOJ#6068]. 「2017 山东一轮集训 Day4」棋盘[费用流]
题意 题目链接 分析 考虑每个棋子对对应的横向纵向的极大区间的影响:记之前这个区间中的点数为 \(x\) ,那么此次多配对的数量即 \(x\) . 考虑费用流,\(S\rightarrow 横向区间 ...
- LOJ 6068「2017 山东一轮集训 Day4」棋盘
题意 一个 \(n\times n\) 的棋盘上面有若干障碍物. 定义两个棋子可以互相攻击当且仅当这两个棋子的横坐标或纵坐标相等而且中间不能隔着障碍物.(可以隔棋子) 有 \(q\) 次询问,每次询问 ...
- Loj #6073.「2017 山东一轮集训 Day5」距离
Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...
- 「2017 山东一轮集训 Day5」苹果树
「2017 山东一轮集训 Day5」苹果树 \(n\leq 40\) 折半搜索+矩阵树定理. 没有想到折半搜索. 首先我们先枚举\(k\)个好点,我们让它们一定没有用的.要满足这个条件就要使它只能和坏 ...
- 【LOJ#6066】「2017 山东一轮集训 Day3」第二题(哈希,二分)
[LOJ#6066]「2017 山东一轮集训 Day3」第二题(哈希,二分) 题面 LOJ 题解 要哈希是很显然的,那么就考虑哈希什么... 要找一个东西可以表示一棵树,所以我们找到了括号序列. 那么 ...
随机推荐
- 【CodeForces】889 C. Maximum Element 排列组合+动态规划
[题目]C. Maximum Element [题意]给定n和k,定义一个排列是好的当且仅当存在一个位置i,满足对于所有的j=[1,i-1]&&[i+1,i+k]有a[i]>a[ ...
- 浅谈卡特兰数(Catalan number)的原理和相关应用
一.卡特兰数(Catalan number) 1.定义 组合数学中一个常出现在各种计数问题中出现的数列(用c表示).以比利时的数学家欧仁·查理·卡特兰的名字来命名: 2.计算公式 (1)递推公式 c[ ...
- 【译】DTD - Entities
原文:DTD - Entities 实体用于定义XML文档中特殊字符的快捷方式. 实体主要有四种类型: 内置实体(Built-in entities) 字符实体(Character entities) ...
- python模块之imghdr检测图片类型
1. imghdr是什么 imghdr是一个用来检测图片类型的模块,传递给它的可以是一个文件对象,也可以是一个字节流. 能够支持的图片格式: 2. 如何使用 提供了一个api叫做imghdr.what ...
- 爬虫--selenium
什么是selenium? 基本使用 from selenium import webdriver from selenium.webdriver.common.by import By from se ...
- pycharm设置字体大小
pycharm 是很好的一个IDE,在windows下,和macOS下,都能很好的运行.唯一缺点是启动慢. 默认字体太小,在mac下,需要瞪大24K氪金狗眼才能看清. 为了保护好眼睛,我们需要把字体调 ...
- Java多线程学习(七)并发编程中一些问题
本节思维导图: 关注微信公众号:"Java面试通关手册" 回复"Java多线程"获取思维导图源文件和思维导图软件. 多线程就一定好吗?快吗?? 并发编程的目的就 ...
- shell source命令说明
当我修改了/etc/profile文件,我想让它立刻生效,而不用重新登录:这时就想到用source命令,如:source /etc/profile对source进行了学习,并且用它与sh 执行脚本进行 ...
- logging模块配置笔记
logging模块配置笔记 log文件的路径 #判断在当前的目录下是否有一个logs文件夹.没有则创建 log_dir = os.path.dirname(os.path.dirname(__file ...
- WebBrowser中运行js
HtmlElement script = wf.WebBrowser.Document.CreateElement("script"); script.SetAttribute(& ...