[BZOJ4320][ShangHai2006]Homework(根号分治+并查集)
对于<=sqrt(300000)的询问,对每个模数直接记录结果,每次加入新数时暴力更新每个模数的结果。
对于>sqrt(300000)的询问,枚举倍数,每次查询大于等于这个倍数的最小数是多少,这个操作通过将询问逆序使用并查集支持。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=,M=,B=;
char ch;
int n,x,a[N],ans[N],q[N],q2[N],fa[N];
int get(int x){ return (fa[x]==x) ? x : fa[x]=get(fa[x]); } int main(){
freopen("bzoj4320.in","r",stdin);
freopen("bzoj4320.out","w",stdout);
scanf("%d",&n);
rep(i,,M) fa[i]=i+; fa[M+]=M+;
rep(i,,B) a[i]=i+;
rep(i,,n){
scanf(" %c",&ch);
if (ch=='A'){
scanf("%d",&x); fa[x]=x;
rep(j,,B) a[j]=min(a[j],x%j);
q[i]=; q2[i]=x;
}else{
scanf("%d",&x);
if (x<=B) q[i]=,q2[i]=,ans[i]=a[x]; else q[i]=,q2[i]=x;
}
}
for (int i=n; i; i--){
if (q[i]) fa[q2[i]]=q2[i]+;
else if (q2[i]){
ans[i]=M+;
for (int j=; j<=M; j+=q2[i])
if (get(j)<=M) ans[i]=min(ans[i],get(j)-j);
}
}
rep(i,,n) if (!q[i]) printf("%d\n",ans[i]);
return ;
}
[BZOJ4320][ShangHai2006]Homework(根号分治+并查集)的更多相关文章
- BZOJ4320 ShangHai2006 Homework(分块+并查集)
考虑根号分块.对于<√3e5的模数,每加入一个数就暴力更新最小值:对于>√3e5的模数,由于最多被分成√3e5块,查询时对每一块找最小值,这用一些正常的DS显然可以做到log,但不太跑得过 ...
- 【bzoj4320】【ShangHai2006 Homework】【并查集+离线处理】
ShangHai2006 Homework Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 918 Solved: 460[Submit][Statu ...
- BZOJ.4320.[ShangHai2006]Homework(根号分治 分块)
BZOJ \(\mathbb{mod}\)一个数\(y\)的最小值,可以考虑枚举剩余系,也就是枚举区间\([0,y),[y,2y),[2y,3y)...\)中的最小值(求后缀最小值也一样)更新答案,复 ...
- 【CF576E】Painting Edges 线段树按时间分治+并查集
[CF576E]Painting Edges 题意:给你一张n个点,m条边的无向图,每条边是k种颜色中的一种,满足所有颜色相同的边内部形成一个二分图.有q个询问,每次询问给出a,b代表将编号为a的边染 ...
- 2018.09.30 bzoj4025: 二分图(线段树分治+并查集)
传送门 线段树分治好题. 这道题实际上有很多不同的做法: cdq分治. lct. - 而我学习了dzyo的线段树分治+并查集写法. 所谓线段树分治就是先把操作分成lognlognlogn个连续不相交的 ...
- BZOJ_4025_二分图_线段树按时间分治+并查集
BZOJ_4025_二分图_线段树按时间分治+并查集 Description 神犇有一个n个节点的图.因为神犇是神犇,所以在T时间内一些边会出现后消失.神犇要求出每一时间段内这个图是否是二分图.这么简 ...
- hdu_5354_Bipartite Graph(cdq分治+并查集判二分图)
题目链接:hdu_5354_Bipartite Graph 题意: 给你一个由无向边连接的图,问对于每一个点来说,如果删除这个点,剩下的点能不能构成一个二分图. 题解: 如果每次排除一个点然后去DFS ...
- BZOJ 4025: 二分图 [线段树CDQ分治 并查集]
4025: 二分图 题意:加入边,删除边,查询当前图是否为二分图 本来想练lct,然后发现了线段树分治的做法,感觉好厉害. lct做法的核心就是维护删除时间的最大生成树 首先口胡一个分块做法,和hno ...
- bzoj4025二分图(线段树分治 并查集)
/* 思维难度几乎没有, 就是线段树分治check二分图 判断是否为二分图可以通过维护lct看看是否链接出奇环 然后发现不用lct, 并查集维护奇偶性即可 但是复杂度明明一样哈 */ #include ...
随机推荐
- [转]FILE的用法
#include <stdio.h> int main() { char c; ; FILE *file; file = fopen("test.txt", " ...
- 【BZOJ】1798: [Ahoi2009]Seq 维护序列seq 线段树多标记(区间加+区间乘)
[题意]给定序列,支持区间加和区间乘,查询区间和取模.n<=10^5. [算法]线段树 [题解]线段树多重标记要考虑标记与标记之间的相互影响. 对于sum*b+a,+c直接加上即可. *c后就是 ...
- python并发编程之multiprocessing进程(二)
python的multiprocessing模块是用来创建多进程的,下面对multiprocessing总结一下使用记录. 系列文章 python并发编程之threading线程(一) python并 ...
- Linux内核中的队列 kfifo【转】
转自:http://airekans.github.io/c/2015/10/12/linux-kernel-data-structure-kfifo#api 在内核中经常会有需要用到队列来传递数据的 ...
- Google Gapps – Download Gapps for Android【转】
http://wiki.rootzwiki.com/Google_Apps http://productforums.google.com/forum/#!forum/apps http://www. ...
- 【题解】BZOJ 3600: 没有人的算术——替罪羊树、线段树
题目传送门 题意 具体的自己去上面看吧...反正不是权限题. 简单来说,就是定义了一类新的数,每个数是0或者为 \((x_L, x_R)\) ,同时定义比较大小的方式为:非零数大于零,否则按字典序比较 ...
- What does “=>” mean in import in scala?(转自StackOverflow问答)
As others have mentioned, it's an import rename. There is however one further feature that proves ...
- Maven整合Spring与Solr
首先,在maven的pom.xml文件中配置对spring和solrj客户端的依赖: <project xmlns="http://maven.apache.org/POM/4.0.0 ...
- 转载--void指针(void *的用法)
转自:jimmy 指针有两个属性:指向变量/对象的地址和长度 但是指针只存储地址,长度则取决于指针的类型 编译器根据指针的类型从指针指向的地址向后寻址 指针类型不同则寻址范围也不同,比如: int*从 ...
- 非常粗糙的react网页ppt
import React, {Component} from 'react'; import './slide.css'; class Page extends Component { constru ...