[BZOJ4320][ShangHai2006]Homework(根号分治+并查集)
对于<=sqrt(300000)的询问,对每个模数直接记录结果,每次加入新数时暴力更新每个模数的结果。
对于>sqrt(300000)的询问,枚举倍数,每次查询大于等于这个倍数的最小数是多少,这个操作通过将询问逆序使用并查集支持。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=,M=,B=;
char ch;
int n,x,a[N],ans[N],q[N],q2[N],fa[N];
int get(int x){ return (fa[x]==x) ? x : fa[x]=get(fa[x]); } int main(){
freopen("bzoj4320.in","r",stdin);
freopen("bzoj4320.out","w",stdout);
scanf("%d",&n);
rep(i,,M) fa[i]=i+; fa[M+]=M+;
rep(i,,B) a[i]=i+;
rep(i,,n){
scanf(" %c",&ch);
if (ch=='A'){
scanf("%d",&x); fa[x]=x;
rep(j,,B) a[j]=min(a[j],x%j);
q[i]=; q2[i]=x;
}else{
scanf("%d",&x);
if (x<=B) q[i]=,q2[i]=,ans[i]=a[x]; else q[i]=,q2[i]=x;
}
}
for (int i=n; i; i--){
if (q[i]) fa[q2[i]]=q2[i]+;
else if (q2[i]){
ans[i]=M+;
for (int j=; j<=M; j+=q2[i])
if (get(j)<=M) ans[i]=min(ans[i],get(j)-j);
}
}
rep(i,,n) if (!q[i]) printf("%d\n",ans[i]);
return ;
}
[BZOJ4320][ShangHai2006]Homework(根号分治+并查集)的更多相关文章
- BZOJ4320 ShangHai2006 Homework(分块+并查集)
考虑根号分块.对于<√3e5的模数,每加入一个数就暴力更新最小值:对于>√3e5的模数,由于最多被分成√3e5块,查询时对每一块找最小值,这用一些正常的DS显然可以做到log,但不太跑得过 ...
- 【bzoj4320】【ShangHai2006 Homework】【并查集+离线处理】
ShangHai2006 Homework Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 918 Solved: 460[Submit][Statu ...
- BZOJ.4320.[ShangHai2006]Homework(根号分治 分块)
BZOJ \(\mathbb{mod}\)一个数\(y\)的最小值,可以考虑枚举剩余系,也就是枚举区间\([0,y),[y,2y),[2y,3y)...\)中的最小值(求后缀最小值也一样)更新答案,复 ...
- 【CF576E】Painting Edges 线段树按时间分治+并查集
[CF576E]Painting Edges 题意:给你一张n个点,m条边的无向图,每条边是k种颜色中的一种,满足所有颜色相同的边内部形成一个二分图.有q个询问,每次询问给出a,b代表将编号为a的边染 ...
- 2018.09.30 bzoj4025: 二分图(线段树分治+并查集)
传送门 线段树分治好题. 这道题实际上有很多不同的做法: cdq分治. lct. - 而我学习了dzyo的线段树分治+并查集写法. 所谓线段树分治就是先把操作分成lognlognlogn个连续不相交的 ...
- BZOJ_4025_二分图_线段树按时间分治+并查集
BZOJ_4025_二分图_线段树按时间分治+并查集 Description 神犇有一个n个节点的图.因为神犇是神犇,所以在T时间内一些边会出现后消失.神犇要求出每一时间段内这个图是否是二分图.这么简 ...
- hdu_5354_Bipartite Graph(cdq分治+并查集判二分图)
题目链接:hdu_5354_Bipartite Graph 题意: 给你一个由无向边连接的图,问对于每一个点来说,如果删除这个点,剩下的点能不能构成一个二分图. 题解: 如果每次排除一个点然后去DFS ...
- BZOJ 4025: 二分图 [线段树CDQ分治 并查集]
4025: 二分图 题意:加入边,删除边,查询当前图是否为二分图 本来想练lct,然后发现了线段树分治的做法,感觉好厉害. lct做法的核心就是维护删除时间的最大生成树 首先口胡一个分块做法,和hno ...
- bzoj4025二分图(线段树分治 并查集)
/* 思维难度几乎没有, 就是线段树分治check二分图 判断是否为二分图可以通过维护lct看看是否链接出奇环 然后发现不用lct, 并查集维护奇偶性即可 但是复杂度明明一样哈 */ #include ...
随机推荐
- 使用keytool生成ssl密钥文件keystore和truststore
最近在研究Mina的开发,通信的时候需要数据加密,而且mina本身支持SSLFilter过滤器,所以可以采用SSL加密的方式对数据进行加密. 在进行加密之前,我们需要使用keytool(这个存在于C: ...
- 中国区的Azure添加到 VSTS 的 Service Endpoint
把中国区的Azure添加到 VSTS (Visual Studio Team System) 的 Service Endpoint. 这个是使用 VSTS 自动部署到中国区Azure的前置条件. Se ...
- IT行业经典面试技巧及方法思路。
问题1:为什么从上家公司离职?”能说说原因吗? 首先,作为一个从事招聘的HR,并不认为追问面试者为什么从上一家公司离职是个明智的做法起码不应该在面试一开始就抛出这个问题,一个较为明显的原因是因为这会引 ...
- Dagger:快速的依赖注入for 安卓&Java
Dagger:快速的依赖注入for 安卓&Java 2014年5月8日 星期四 15:29 官网: http://square.github.io/dagger/ GitHub: https: ...
- 三十分钟理解计算图上的微积分:Backpropagation,反向微分
神经网络的训练算法,目前基本上是以Backpropagation (BP) 反向传播为主(加上一些变化),NN的训练是在1986年被提出,但实际上,BP 已经在不同领域中被重复发明了数十次了(参见 G ...
- python快速教程-vamei
2016年10月26日 12:00:53 今天开始着手python的学习,希望能高效快速的学完! Python基础(上)... 7 实验简介... 7 一.实验说明... 8 1. 环境登录... 8 ...
- Redis实战(四)
配置好了web.config程序,并且能通过C#代码来读取和管理以上配置信息. 接下来,就可以进行Redis的数据写入了.Redis中可以用Store和StoreAll分别保存单条和多条数据,C#中具 ...
- 使用minikube在windows构建kubernetes群集
只建议在开发环境中使用,不建议在windows下使用docker或者kubernetes. 1. 安装VirtualBox或者Hyper-v(安装步骤略) 2. 下载kubectl和minikube工 ...
- 记录自己在 cmd 中执行 jar 文件遇到的一些错误
记录自己在 cmd 中执行 jar 文件遇到的一些错误 场景: 请求接口,解析接口返回的 JSON 字符串并插入到我们的数据库里面. 情况: 项目在 eclipse 中正常运行,打成 jar 包后在 ...
- 【笔试题】Java 中如何递归显示一个目录下面的所有目录和文件?
笔试题 Java 中如何递归显示一个目录下面的所有目录和文件? import java.io.File; public class Test { private static void showDir ...