题意:给你一段区间,需要你求出(在这段区间之类的最小值*这段区间所有元素之和)的最大值......

例如:

6
3 1 6 4 5 2

以4为最小值,向左右延伸,6 4 5  值为60.......

思路:解决完为这道题目,我才真正明白了单调栈的原理,它就是以某一个值为最小(最大)值,向这个值的两侧延伸,遇到大于它(小于它)的值,就将它延伸的范围扩大,当然,一般来说,要这样做的算法复杂度为o(n^2),但是借助栈这个玩意,维护其单调增(减),就可以在o(n)的时间复杂度解决这个问题。将一元素加入栈时,先判断它是否大于(小于)栈顶元素,若是大于(小于)栈顶元素,加入栈。(从这里开始只讲维护单调增栈)否则,将栈顶元素出栈,直到栈顶元素小于要加入栈的元素,在此过程中,需要维护向前延伸和向后延伸的问题,当要加入栈的元素之前有n个栈元素出栈,那么说明这n个出栈的元素都会大于或者等于要入栈的元素,此时,我们需要维护入栈元素可以向前延伸多少个元素(相当于记录它的前面有多少个元素比它大),而每个栈顶元素要向出栈了的元素延伸,因为在出栈了的元素一定是比它的大的元素(根据我维护的是单调增栈)......这样,就在o(n)的时间复杂度内解决了上述问题.........

例如:3 1 6 4 5 2

(3,1,1)  (1,2,2)  (6,3,3)  (4,4,4)  (5,5,5)  (2,6,6)

首先每个元素自己本身的前后延伸都为1,把3加入栈,1<3,把3出栈,用1的前延伸加上3的前延伸,如此变为(1,1,2),6<1,入栈,变成(1,1,2)(6,3,3),

4<6,将6出栈,4向前延伸,1向后延伸变成(1,1,3) (4,3,4)

5>4,入栈,变成(1,1,3)(4,3,4)(5,5,5)

2<5,5出栈,2向前延伸,4向后延伸,变成(1,1,3)(4,3,5)                   2还未入栈(2,5,6)

2<4,4出栈,2向前延伸,1向后延伸,变成(1,1,5) (2,3,6).....

一次类推,会发现最大的结果在(4,3,5)这里这意味着,以4为最小值的区间范围为3————5,也就是6 4 5

#include<iostream>
#include<stack>
#include<stdio.h>
using namespace std;
#define maxx 110000
__int64 str[maxx],t[maxx];
struct node
{
__int64 num,pre,next; //num记录数值,pre记录向前延伸多少个,next记录向后延伸多少个,k记录本身所处的位置
__int64 k;
};
int main()
{
int n;
while(scanf("%d",&n)>0)
{
stack<node>Q;
node tmp;
__int64 ans=-100,sum=-100,num;
str[0]=0;
for(__int64 i=1;i<=n;i++)
{
scanf("%I64d",&t[i]);
if(i==1)
str[i]=t[i];
else
str[i]=str[i-1]+t[i];
}
tmp.num=t[1];
tmp.pre=1;
tmp.next=1;
tmp.k=1;
Q.push(tmp);
__int64 x=0,y=0;
for(__int64 i=2;i<=n;i++)
{
node tmp1;
tmp1.num=t[i];
tmp1.pre=tmp1.next=1;
tmp1.k=i;
while(!Q.empty()&&tmp1.num<=Q.top().num)
{
tmp=Q.top();
Q.pop();
if(!Q.empty())
Q.top().next+=tmp.next;
tmp1.pre+=tmp.pre;
ans=tmp.num*(str[tmp.k+tmp.next-1]-str[tmp.k-tmp.pre]);
if(ans>=sum)
{
sum=ans;
x=tmp.k-tmp.pre+1;
y=tmp.k+tmp.next-1;
}
}
Q.push(tmp1);
}
while(!Q.empty())
{
tmp=Q.top();
Q.pop();
if(!Q.empty())
Q.top().next+=tmp.next;
ans=tmp.num*(str[tmp.k+tmp.next-1]-str[tmp.k-tmp.pre]);
if(ans>=sum)
{
sum=ans;
x=tmp.k-tmp.pre+1;
y=tmp.k+tmp.next-1;
}
} if(n==0)x=y=0;
printf("%I64d\n%I64d %I64d\n",sum,x,y);
}
return 0;
}

单调栈poj2796的更多相关文章

  1. POJ2796 Feel Good 单调栈

    题意:给定一个序列,需要找出某个子序列S使得Min(a[i])*Σa[i] (i属于S序列)最大 正解:单调栈 这题的暴力还是很好想的,只需3分钟的事就可以码完,以每个点拓展即可,但这样的复杂度是O( ...

  2. upc组队赛1 小C的数学问题【单调栈】(POJ2796)

    小C的数学问题 题目描述 小C是个云南中医学院的大一新生,在某个星期二,他的高数老师扔给了他一个问题. 让他在1天的时间内给出答案. 但是小C不会这问题,现在他来请教你. 请你帮他解决这个问题. 有n ...

  3. poj2796 维护区间栈//单调栈

    http://poj.org/problem?id=2796 题意:给你一段区间,需要你求出(在这段区间之类的最小值*这段区间所有元素之和)的最大值...... 例如: 6 3 1 6 4 5 2 以 ...

  4. POJ2796(单调栈)

    Feel Good Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 12987   Accepted: 3639 Case T ...

  5. 【POJ2796】Feel Good 单调栈

    题目大意:给定一个长度为 N 的序列,求任意区间 [ l , r ] 中最小的\(min\{v[i],i\in[l,r] \}*\Sigma_{i=l}^rv[i]\). 题解:这是一道具有标准单调栈 ...

  6. POJ2796 Feel Good(单调栈)

    题意:给一个非负整数序列,求哪一段区间的权值最大,区间的权值=区间所有数的和×区间最小的数. 用单调非递减栈在O(n)计算出序列每个数作为最小值能向左和向右延伸到的位置,然后O(n)枚举每个数利用前缀 ...

  7. UVA 1619/POJ2796 滑窗算法/维护一个单调栈

    Feel Good Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 12409   Accepted: 3484 Case T ...

  8. POJ2796【单调栈】

    题意: 题意:n个数,求某段区间的最小值*该段区间所有元素之和的最大值 思路: 主要参考:http://www.cnblogs.com/ziyi–caolu/archive/2013/06/23/31 ...

  9. POJ2796Feel Good[单调栈]

    Feel Good Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 13376   Accepted: 3719 Case T ...

随机推荐

  1. C#实现两个数据库之间的数据上报

    用VS2008实现本地数据库上传数据到远程数据.数据能够是一个表,或一个表的部分数据.或查询数据.或数据编辑后上传. 其他VS版本号.复制当中代码就能够.未使用其他不论什么插件.有具体凝视. 单独页面 ...

  2. 使用dulilib DirectUI库(一)

    1.在创建的窗口类里面 需要继承CWindowWnd.INotifyUI 对于CWindowWnd里面的方法: 实现;,重载virtualUINTGetClassStyle()const;返回窗口的风 ...

  3. Microjs: 超棒的迷你框架和迷你类库搜罗工具

    你可以按条件方便的搜索需要的类库或者框架,以下为条件 基础框架 模板引擎 DOM操作 CSS动画 Javascript动画 数据操作 更多 阅读原文:Microjs: 超棒的迷你框架和迷你类库搜罗工具

  4. ImageResizer for .net 图片处理强大类库

    http://imageresizing.net / 官网 http://imageresizing.net/docs/basics (文档) 变换尺寸,加边框,覆盖文本,和旋转和分割图象

  5. Oracle学习(五):多表查询

    1.知识点:能够对比以下的录屏进行阅读 SQL> --等值连接 SQL> --查询员工信息: 员工号 姓名 月薪 部门名称 SQL> select empno,ename,sal,d ...

  6. Python 正则表达式学习摘要及资料

    来源:Michael_翔_ 摘要 在正则表达式中,如果直接给出字符,就是精确匹配. {m,n}? 对于前一个字符重复 m 到 n 次,并且取尽可能少的情况 在字符串'aaaaaa'中,a{2,4} 会 ...

  7. 一款基于SSM框架技术的全栈Java web项目(已部署可直接体验)

    概述 此项目基于SSM框架技术的Java Web项目,是全栈项目,涉及前端.后端.插件.上线部署等各个板块,项目所有的代码都是自己编码所得,每一步.部分都有清晰的注释,完全不用担心代码混乱,可以轻松. ...

  8. 转载【微信支付】jsapi支付之传参问题(使用微信官方SDK之PHP版本) V3之WxpayPubHelper 亲测有效,V3WxpayAPI_php_v3.zip版未测试,理论上也是一样的。

    本文转载至:http://blog.csdn.net/geeklx/article/details/51146151 (微信支付现在分为v2版和v3版,2014年9月10号之前申请的为v2版,之后申请 ...

  9. 中文latex参考文献格式

    中文latex参考文献格式 原来英文: \begin{thebibliography}{1} \bibitem{Ben-Shimon2015RecSys} D.~Ben-Shimon, A.~Tsik ...

  10. 【LeetCode】89. Gray Code (2 solutions)

    Gray Code The gray code is a binary numeral system where two successive values differ in only one bi ...