题面

传送门

题解

很容易写出一个暴力

\[\sum_{i=l}^r {i+n-1\choose n-1}{s-i+m\choose m}
\]

即枚举选了多少个步兵,然后用插板法算出方案数

我们对这个换一种角度考虑,可以看做是从\((0,0)\)走到\((s,n+m)\),且必须经过\((l,n),(r,n)\)这条直线的方案数

这个就等价于第\(l\)步向右走时纵坐标在\((0,n-1)\)的方案数减去第\(r+1\)步向右走时在\((0,n-1)\)的方案数

ps:关于第\(p\)步向右走时在\((0,n-1)\)的方案的计算的话,我们枚举一下就行了,即为

\[\sum_{i=0}^{n-1}{p-1+i\choose i}{s+n+m-p-i\choose n+m-i}
\]

其中前面是\(p-1+i\)是因为最后一步强制向右走

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=2e7+5,P=998244353;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int inv[N],f[N],g[N];
int n,m,s,l,r;
int calc(R int p){
if(p>s)return 0;
int res=0;
f[0]=g[0]=1;
fp(i,1,n+m){
g[i]=1ll*g[i-1]*(p+i-1)%P*inv[i]%P,
f[i]=1ll*f[i-1]*(s-p+i)%P*inv[i]%P;
}
fp(i,0,n-1)res=add(res,mul(f[n+m-i],g[i]));
return res;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d%d%d%d",&n,&m,&s,&l,&r);
inv[0]=inv[1]=1;fp(i,2,N-1)inv[i]=1ll*(P-P/i)*inv[P%i]%P;
printf("%d\n",dec(calc(l),calc(r+1)));
return 0;
}

牛客挑战赛30D 小A的昆特牌(组合数学)的更多相关文章

  1. [牛客挑战赛 30D] 小A的昆特牌 解题报告 (组合数学)

    interlinkage: https://ac.nowcoder.com/acm/contest/375/D description: solution: 我们枚举步兵的数量$x$,还剩下$S-x$ ...

  2. 【牛客挑战赛30D】小A的昆特牌(组合问题抽象到二维平面)

    点此看题面 大致题意: 有\(S\)张无编号的牌,可以将任意张牌锻造成\(n\)种步兵或\(m\)种弩兵中的一种,求最后步兵数量大于等于\(l\)小于等于\(r\)的方案数. 暴力式子 首先我们来考虑 ...

  3. 牛客挑战赛30 小G砍树 树形dp

    小G砍树 dfs两次, dp出每个点作为最后一个点的方案数. #include<bits/stdc++.h> #define LL long long #define fi first # ...

  4. 牛客挑战赛30-T3 小G砍树

    link 题目大意: n个节点的带标号无根树.每次选择一个度数为1的节点并将它从树上移除.问总共有多少种不同的方式能将这棵树删到只剩 1 个点.两种方式不同当且仅当至少有一步被删除的节点不同. 题解: ...

  5. 牛客挑战赛 39 牛牛与序列 隔板法 容斥 dp

    LINK:牛牛与序列 (牛客div1的E题怎么这么水... 还没D难. 定义一个序列合法 当且仅当存在一个位置i满足 $a_i>a_,a_j<a_$且对于所有的位置i,$1 \leq a_ ...

  6. 牛客挑战赛 30 A 小G数数

    题目链接:https://ac.nowcoder.com/acm/contest/375/A 分析:我写的时候竟然把它当成了DP....... 还建了个结构体DP数组,保存一二位,不知道当时脑子在抽啥 ...

  7. 5.15 牛客挑战赛40 C 小V和字符串 数位dp 计数问题

    LINK:小V和字符串 容易想到只有1个数相同的 才能有贡献. 知道两个01串 那么容易得到最小步数 大体上就是 第一个串的最前的1和第二个串最前的1进行匹配. 容易想到设f[i][j]表示 前i位1 ...

  8. 5.15 牛客挑战赛40 E 小V和gcd树 树链剖分 主席树 树状数组 根号分治

    LINK:小V和gcd树 时限是8s 所以当时好多nq的暴力都能跑过. 考虑每次询问暴力 跳父亲 这样是nq的 4e8左右 随便过. 不过每次跳到某个点的时候需要得到边权 如果直接暴力gcd的话 nq ...

  9. 5.15 牛客挑战赛40 B 小V的序列 关于随机均摊分析 二进制

    LINK:小V的序列 考试的时候 没想到正解 于是自闭. 题意很简单 就是 给出一个序列a 每次询问一个x 问序列中是否存在y 使得x^y的二进制位位1的个数<=3. 容易想到 暴力枚举. 第一 ...

随机推荐

  1. 【CodeForces148D】Bag of mice

    题意 dragon和princess玩一个游戏.开始的时候袋子里有w个白老鼠和b个黑老鼠.两个人轮流从袋子里面往外摸老鼠.谁先拿到白老鼠谁先获胜.dragon每次抓出一只老鼠,剩下老鼠里面都会有一只跳 ...

  2. Stars URAL - 1028

    就是给你一些星星的坐标,然后求出每个星星的左下角有多少颗星星 题目保证按照Y坐标的顺序给出每个星星的坐标,那么我们就可以说,当输入某个星星的坐标时,此时有多少个星星的横坐标小于它,它左下角就有多少星星 ...

  3. 269. Alien Dictionary火星语字典(拓扑排序)

    [抄题]: There is a new alien language which uses the latin alphabet. However, the order among letters ...

  4. Logger Rate Limiter 十秒限时计数器

    [抄题]: Design a logger system that receive stream of messages along with its timestamps, each message ...

  5. 8-机器分配(hud4045-组合+第二类斯特林数)

    http://acm.hdu.edu.cn/showproblem.php?pid=4045 Machine schedulingTime Limit: 5000/2000 MS (Java/Othe ...

  6. archives of source

    "ubuntu 暂时不能解析域名 archive.ubuntu.com"怎么办? root下输入命令:lsb_release -a用来查询Ubuntu版本号 登录网站 http:/ ...

  7. 44个javascript 变态题解析

    原题来自: javascript-puzzlers 读者可以先去做一下感受感受. 当初笔者的成绩是 21/44… 当初笔者做这套题的时候不仅怀疑智商, 连人生都开始怀疑了…. 不过, 对于基础知识的理 ...

  8. 选项“6”对 /langversion 无效;必须是 ISO-1、ISO-2、3、4、5 或 Default

    部署MVC的时候,因为服务器.NET版本是4.5.1,所以在vs将.NET版本降到4.5.1的时候发布报错. 原因:C#6降到C#5导致 解决办法:修改web.config配置 ,编译选项改为comp ...

  9. top命令查看进程列表

    top命令查看进程列表 top命令是linux下常用的性能分析工具,能实时显示系统中各个进程的资源占用状况.和win的资源管理器类似.top是一个动态显示过程,即可以通过用户按键来不断刷新当前状态,如 ...

  10. CGLIB介绍与原理(通过继承的动态代理)

    一.什么是CGLIB? CGLIB是一个功能强大,高性能的代码生成包.它为没有实现接口的类提供代理,为JDK的动态代理提供了很好的补充.通常可以使用Java的动态代理创建代理,但当要代理的类没有实现接 ...