---恢复内容开始---

本文件对应logistic.py

amazonaccess介绍:

根据入职员工的定位(员工角色代码、角色所属家族代码等特征)判断员工是否有访问某资源的权限

logistic.py(python)的关键:

1.通过组合组合几个特征来获取新的特征

例如:组合MGR_ID ROLE_FAMILY得到新特征 hash((85475,290919))=1071656665

2.greedy feature selection

i.  首先从候选特征中选择1个在训练集上表现最好的特征,将其加入好特征goodfeatures中,并将该特征从中候选特征中排除

ii. 从候选特征中选择一个特征与goodfeatures中特征一起,选取在训练数据集中表现最好的特征,加入goodfeatures中,并将该特征从中候选特征中排除

iii.继续选取,直到在训练集上的表现不再增加为止

3.One Hot Encoding

例如:对数据离散数据 [23 33 33 44]进行编码

i. 首先relable,转换为 [0 1 1 2]

ii.对0进行编码 0 0 1   对应 23

对1进行编码 0 1 0   对应 33

对2进行编码 1 0 0   对应 44

这样在最后使用线性模型的时候,离散数据的每个标签都会对应一个权重

代码流程:

1.读取数据,去除ROLE_CODE属性

learner = 'log'
print "Reading dataset..."
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')
submit=learner + str(SEED) + '.csv'
#去除ROLE_CODE特征,因为train和test数据需要同时做变换,所以合到一块
all_data = np.vstack((train_data.ix[:,1:-1], test_data.ix[:,1:-1]))
num_train = np.shape(train_data)[0]

2.对数据进行relable

# Transform data
print "Transforming data..."
# Relabel the variable values to smallest possible so that I can use bincount
# on them later.
relabler = preprocessing.LabelEncoder()
for col in range(len(all_data[0,:])):
relabler.fit(all_data[:, col])
all_data[:, col] = relabler.transform(all_data[:, col])

3.组合特征生成新特征,这里分别组合了2个特征和3个特征,分别生成(28-2)和(56-12)个新特征,并与原特征合并

在组合特征时,排除了(ROLE_FAMILY,ROLE_FAMILY_DESC)和(ROLE_ROLLUP_1,ROLE_ROLLUP_2)组合

因为特征中很多标签对应的数据只有1条或2条,将这些数据合并到个标签中

组合特征的函数

def group_data(data, degree=3, hash=hash):
"""
numpy.array -> numpy.array Groups all columns of data into all combinations of triples
"""
new_data = []
m,n = data.shape
for indicies in combinations(range(n), degree):
#去除ROLE_TITLE和ROLE_FAMILY组合
if 5 in indicies and 7 in indicies:
print "feature Xd"
#去除ROLE_ROLLUP_1和ROLE_ROLLUP_2组合
elif 2 in indicies and 3 in indicies:
print "feature Xd"
else:
new_data.append([hash(tuple(v)) for v in data[:,indicies]])
return array(new_data).T

合并数据只有1条或两条的标签

dp = group_data(all_data, degree=2)
for col in range(len(dp[0,:])):
relabler.fit(dp[:, col])
dp[:, col] = relabler.transform(dp[:, col])
uniques = len(set(dp[:,col]))
maximum = max(dp[:,col])
print col
if maximum < 65534:
count_map = np.bincount((dp[:, col]).astype('uint16'))
for n,i in enumerate(dp[:, col]):
#只有1条数据的标签,合并
if count_map[i] <= 1:
dp[n, col] = uniques
#只有2条数据的标签,合并
elif count_map[i] == 2:
dp[n, col] = uniques+1
else:
for n,i in enumerate(dp[:, col]):
if (dp[:, col] == i).sum() <= 1:
dp[n, col] = uniques
elif (dp[:, col] == i).sum() == 2:
dp[n, col] = uniques+1
print uniques # unique values
uniques = len(set(dp[:,col]))
print uniques
relabler.fit(dp[:, col])
dp[:, col] = relabler.transform(dp[:, col])

将新特征和原特征合并

# Collect the training features together
y = array(train_data.ACTION)
X = all_data[:num_train]
X_2 = dp[:num_train]
X_3 = dt[:num_train] # Collect the testing features together
X_test = all_data[num_train:]
X_test_2 = dp[num_train:]
X_test_3 = dt[num_train:] X_train_all = np.hstack((X, X_2, X_3))
X_test_all = np.hstack((X_test, X_test_2, X_test_3))

4.one hot encoding

def OneHotEncoder(data, keymap=None):
"""
OneHotEncoder takes data matrix with categorical columns and
converts it to a sparse binary matrix. Returns sparse binary matrix and keymap mapping categories to indicies.
If a keymap is supplied on input it will be used instead of creating one
and any categories appearing in the data that are not in the keymap are
ignored
"""
if keymap is None:
keymap = []
for col in data.T:
uniques = set(list(col))
keymap.append(dict((key, i) for i, key in enumerate(uniques)))
total_pts = data.shape[0]
outdat = []
for i, col in enumerate(data.T):
km = keymap[i]
num_labels = len(km)
spmat = sparse.lil_matrix((total_pts, num_labels))
for j, val in enumerate(col):
if val in km:
spmat[j, km[val]] = 1
outdat.append(spmat)
outdat = sparse.hstack(outdat).tocsr()
return outdat, keymap # Xts holds one hot encodings for each individual feature in memory
# speeding up feature selection
Xts = [OneHotEncoder(X_train_all[:,[i]])[0] for i in range(num_features)]

5.greedy feature selection

print "Performing greedy feature selection..."
score_hist = []
N = 10
good_features = set([])
# Greedy feature selection loop
while len(score_hist) < 2 or score_hist[-1][0] > score_hist[-2][0]:
scores = []
for f in range(len(Xts)):
if f not in good_features:
feats = list(good_features) + [f]
Xt = sparse.hstack([Xts[j] for j in feats]).tocsr()
score = cv_loop(Xt, y, model, N)
scores.append((score, f))
print "Feature: %i Mean AUC: %f" % (f, score)
good_features.add(sorted(scores)[-1][1])
score_hist.append(sorted(scores)[-1])
print "Current features: %s" % sorted(list(good_features)) # Remove last added feature from good_features
good_features.remove(score_hist[-1][1])
good_features = sorted(list(good_features))
print "Selected features %s" % good_features
gf = open("feats" + submit, 'w')
print >>gf, good_features
gf.close()
print len(good_features), " features"

6.通过validation选取最优参数,logistic regression为regularization strength

print "Performing hyperparameter selection..."
# Hyperparameter selection loop
score_hist = []
Xt = sparse.hstack([Xts[j] for j in good_features]).tocsr()
if learner == 'NB':
Cvals = [0.001, 0.003, 0.006, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.1]
else:
Cvals = np.logspace(-4, 4, 15, base=2) # for logistic
for C in Cvals:
if learner == 'NB':
model.alpha = C
else:
model.C = C
score = cv_loop(Xt, y, model, N)
score_hist.append((score,C))
print "C: %f Mean AUC: %f" %(C, score)
bestC = sorted(score_hist)[-1][1]
print "Best C value: %f" % (bestC)

7.预测

print "Performing One Hot Encoding on entire dataset..."
Xt = np.vstack((X_train_all[:,good_features], X_test_all[:,good_features]))
Xt, keymap = OneHotEncoder(Xt)
X_train = Xt[:num_train]
X_test = Xt[num_train:] if learner == 'NB':
model.alpha = bestC
else:
model.C = bestC print "Training full model..."
print "Making prediction and saving results..."
model.fit(X_train, y)
preds = model.predict_proba(X_test)[:,1]
create_test_submission(submit, preds)
preds = model.predict_proba(X_train)[:,1]
create_test_submission('Train'+submit, preds)

---恢复内容结束---

[amazonaccess 1]logistic.py 特征提取的更多相关文章

  1. 【机器学习实战】第5章 Logistic回归

    第5章 Logistic回归 Logistic 回归 概述 Logistic 回归虽然名字叫回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类. 须知概念 ...

  2. 【机器学习实战】第5章 Logistic回归(逻辑回归)

    第5章 Logistic回归 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/ ...

  3. Airbnb新用户的民宿预定结果预测

    1. 背景 关于这个数据集,在这个挑战中,您将获得一个用户列表以及他们的人口统计数据.web会话记录和一些汇总统计信息.您被要求预测新用户的第一个预订目的地将是哪个国家.这个数据集中的所有用户都来自美 ...

  4. sklearn机器学习-泰坦尼克号

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  5. 逻辑回归原理_挑战者飞船事故和乳腺癌案例_Python和R_信用评分卡(AAA推荐)

    sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...

  6. 02-14 scikit-learn库之逻辑回归

    目录 scikit-learn库之逻辑回归 一.LogisticRegression 1.1 使用场景 1.2 代码 1.3 参数详解 1.4 属性 1.5 方法 二.LogisticRegressi ...

  7. Sklearn使用良心完整入门教程

    The complete .ipynb file can be download through my share in onedrive:https://1drv.ms/u/s!Al86h1dThX ...

  8. 《机器学习_02_线性模型_Logistic回归》

    import numpy as np import os os.chdir('../') from ml_models import utils import matplotlib.pyplot as ...

  9. 基于Python的卷积神经网络和特征提取

    基于Python的卷积神经网络和特征提取 用户1737318发表于人工智能头条订阅 224 在这篇文章中: Lasagne 和 nolearn 加载MNIST数据集 ConvNet体系结构与训练 预测 ...

随机推荐

  1. Spring中的DataBinding(一)

    DataBinding在Spring中应用. 第一点:使用ModelAttribute指定带绑定的数据内容 很重要的属性:@ModelAttribute([value=""])可以 ...

  2. DataGridView 去掉多余的列

    去掉DataGridView多余的列: this.DataGridView.AutoGenerateColumns = false;

  3. android-support关联源码

    http://blog.csdn.net/xiaanming/article/details/9031141 http://www.cnblogs.com/androidez/archive/2013 ...

  4. 从HCE的各种问题 讨论未来趋势

    为了能让NFC手机支持NFC支付,维萨公司和万事达公司宣布了对HCE的研发,并且将很快推出最新的HCE规范.从2012年末,我一直在关注关于HCE的相关信息,其原因是由于我们公司参与了名为Simply ...

  5. Windows提供了两种将DLL映像到进程地址空间的方法

    调用DLL,首先需要将DLL文件映像到用户进程的地址空间中,然后才能进行函数调用,这个函数和进程内部一般函数的调用方法相同.Windows提供了两种将DLL映像到进程地址空间的方法: 1. 隐式的加载 ...

  6. Linux下安装nfs服务器

    1. 安装nfs服务 $sudo apt-get install nfs-kernel-server portmap 2. 在配置文件/etc/exports中添加以下内容/home/jxhui/nf ...

  7. Ubuntu 14.04 安装桌面

    1.Ctrl+alt+T启动终端或者Ctrl+alt+F1登录字符界面,执行以下命令重新安装Ubuntu unity(Ubuntu基本桌面): sudo apt-get install ubuntu- ...

  8. svm中的数学和算法

    支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本.非线性及高维模式识别中表现出很多特有的优势,并可以推广应用到函数拟合等其它 ...

  9. 开源 java CMS - FreeCMS2.3 移动app生成首页数据

    原文地址:http://javaz.cn/site/javaz/site_study/info/2015/28160.html​ 项目地址:http://www.freeteam.cn/ 生成首页数据 ...

  10. Java 反射机制浅析

    Java反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意一个方法和属性:这种动态获取的信息以及动态调用对象的方法的功能称为Java语言的反 ...