Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025  385 = 2640.

Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.

前十个自然数的平方和是:

12 + 22 + ... + 102 = 385

前十个自然数的和的平方是:

(1 + 2 + ... + 10)2 = 552 = 3025

所以平方和与和的平方的差是3025  385 = 2640.

找出前一百个自然数的平方和与和平方的差。

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <math.h> #define N 100 int powplus(int n, int k)
{
int s=;
while(k--)
{
s*=n;
}
return s;
} int sum1(int n)
{
return powplus((n+)*n/,);
} int sum2(int n)
{
return (n*(n+)*(*n+))/;
} void solve()
{
printf("%d\n",sum1(N));
printf("%d\n",sum2(N));
printf("%d\n",sum1(N)-sum2(N));
} int main()
{
solve();
return ;
}
Answer:
25164150

(Problem 6)Sum square difference的更多相关文章

  1. (Problem 57)Square root convergents

    It is possible to show that the square root of two can be expressed as an infinite continued fractio ...

  2. (Problem 16)Power digit sum

    215 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of th ...

  3. (Problem 13)Large sum

    Work out the first ten digits of the sum of the following one-hundred 50-digit numbers. 371072875339 ...

  4. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

  5. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  6. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  7. (Problem 37)Truncatable primes

    The number 3797 has an interesting property. Being prime itself, it is possible to continuously remo ...

  8. (Problem 36)Double-base palindromes

    The decimal number, 585 = 10010010012(binary), is palindromic in both bases. Find the sum of all num ...

  9. (Problem 35)Circular primes

    The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, ...

随机推荐

  1. linux文件系统操作——底层文件访问

        在不使用标准I/O的情况下,使用write,read,open实现对文件的复制操作,这些调用都是直接使用底层系统调用,完成从用户代码到内核代码的切换,消耗大量的系统资源,今天对此进行研究主要是 ...

  2. 高质量程序设计指南C/C++语言——有了malloc/free为什么还要new/delete?

  3. javascript学习笔记(window .alert 是什么)

    <script language="javascript"> var abc="25"; window .alert(abc); </scri ...

  4. protel99se中做拼板图解

    很多时候我们要在protel99se中做拼板, 但是通常在复制进行拼版的时候会出现如下的效果,元件被重新命名了. 而无法达到我们需要的像下图的效果 那我们怎么办,才能达到上图的效果呢?其实操作很简单. ...

  5. Spring Cache使用详解

    Spring Cache Spring Cache使用方法与Spring对事务管理的配置相似.Spring Cache的核心就是对某个方法进行缓存,其实质就是缓存该方法的返回结果,并把方法参数和结果用 ...

  6. Installing on CentOS/RHEL / KB forum / Ajenti

    Installing on CentOS/RHEL / KB forum / Ajenti Ajenti → KB → Installation Is it?: Inappropriate Spam ...

  7. Android 中文API (69) —— BluetoothAdapter[蓝牙]

    前言 本章内容是  android.bluetooth.BluetoothAdapter,为Android蓝牙部分的章节翻译.本地蓝牙设备的适配类,所有的蓝牙操作都要通过该类完成.版本为 Androi ...

  8. Ext JS学习第二天 我们所熟悉的javascript(一)

    此文用来记录学习笔记: •ExtJS是一个强大的javascript框架,如果想真正的掌握ExtJS,那么我们必须要对javascript有一定的认识,所以很有必要静下心来,抱着一本javascrip ...

  9. Hadoop2.6 Ha 安装

    Hadoop 2.6安装文档 版本说明:hadoop 2.6  linux-64位 Zookeeper3.4.6 jdk 1.7.0_75 1.       Ssh无密码 ssh-keygen vim ...

  10. zoj p3780 Paint the Grid Again

    地址:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5267 题意:Leo 有一个N*N 的格子,他又有一把魔法刷,这个刷子能把 ...