BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )
题意保证了是一个置换群.
根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i,j,k) = dp(x,i-cntx,j,k)+dp(x,i,j-cntx,k)+dp(x,i,j,k-cntx)表示前x个置换红蓝绿个用了i,j,k次,cntx表示第x个置换的循环数. 然后最后乘(M+1)的乘法逆元就OK了.
----------------------------------------------------------------------------
----------------------------------------------------------------------------
1004: [HNOI2008]Cards
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 2381 Solved: 1388
[Submit][Status][Discuss]
Description
小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).
Input
第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。接下来 m 行,每行描述
一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,表示使用这种洗牌法,
第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代替,且对每种
洗牌法,都存在一种洗牌法使得能回到原状态。
Output
不同染法除以P的余数
Sample Input
2 3 1
3 1 2
Sample Output
HINT
有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG 和GRB。
100%数据满足 Max{Sr,Sb,Sg}<=20。
Source
BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )的更多相关文章
- [BZOJ 1004] [HNOI2008] Cards 【Burnside引理 + DP】
题目链接:BZOJ - 1004 题目分析 首先,几个定义和定理引理: 群:G是一个集合,*是定义在这个集合上的一个运算. 如果满足以下性质,那么(G, *)是一个群. 1)封闭性,对于任意 a, b ...
- [bzoj1004][HNOI2008][Cards] (置换群+Burnside引理+动态规划)
Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...
- 【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp
题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choo ...
- BZOJ 1004 HNOI2008 Cards Burnside引理
标题效果:特定n张卡m换人,编号寻求等价类 数据保证这m换人加上置换群置换后本身构成 BZOJ坑爹0.0 条件不那么重要出来尼玛怎么做 Burnside引理--昨晚为了做这题硬啃了一晚上白书0.0 都 ...
- 【BZOJ1004】【HNOI2008】Cards 群论 置换 burnside引理 背包DP
题目描述 有\(n\)张卡牌,要求你给这些卡牌染上RGB三种颜色,\(r\)张红色,\(g\)张绿色,\(b\)张蓝色. 还有\(m\)种洗牌方法,每种洗牌方法是一种置换.保证任意多次洗牌都可用这\( ...
- bzoj 1004 [HNOI2008]Cards && poj 2409 Let it Bead ——置换群
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 http://poj.org/problem?id=2409 学习材料:https:/ ...
- BZOJ1004: [HNOI2008]Cards(Burnside引理 背包dp)
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4255 Solved: 2582[Submit][Status][Discuss] Descript ...
- BZOJ 1004: [HNOI2008]Cards
Description 给你一个序列,和m种可以使用多次的置换,用3种颜色染色,求方案数%p. Sol Burnside定理+背包. Burnside定理 \(N(G,\mathbb{C})=\fra ...
- BZOJ 1004: [HNOI2008]Cards [Polya 生成函数DP]
传送门 题意:三种颜色,规定使用每种颜色次数$r,g,b$,给出一个置换群,求多少种不等价着色 $m \le 60,\ r,g,b \le 20$ 咦,规定次数? <组合数学>上不是有生成 ...
随机推荐
- C#指定目录存放DLL
C#开发中,常常会用到不少扩展库,把这些扩展库的大量DLL放在软件目录下面,非常不美观. 通过设置自定义的DLL存放目录,可以把DLL存在指定的目录下面. 代码如下: <?xml version ...
- nrf51 SDK自带例程的解读
简单的pwm电机控制示例 simple_pwm_motor_control_example 其实就是pwm控制led的亮度 1.首先设置gpiote 设置初始为高电平2.接着设置ppi 定时器time ...
- c风格字符串函数
十一.C 风格字符串 1)字符串操作 strcpy(p, p1) 复制字符串 strncpy(p, p1, n) 复制指定长度字符串 strcat(p, p1) 附加字符串 strncat( ...
- [Windows编程] 开发DLL必读《Best Practices for Creating DLLs》
开发DLL的时候,需要十分注意 DllMain 函数,因为在多线程环境下DLLMain里面的代码很容易引发线程死锁. 这篇MSDN文章<Best Practices for Creating D ...
- Hat’s Words(字典树)
Hat’s Words Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- mahout贝叶斯算法开发思路(拓展篇)1
首先说明一点,此篇blog解决的问题是就下面的数据如何应用mahout中的贝叶斯算法?(这个问题是在上篇(...完结篇)blog最后留的问题,如果想直接使用该工具,可以在mahout贝叶斯算法拓展下载 ...
- STM32菜鸟成长记录---RS485通讯协议的应用
写作原因:近来蛋闲?非也 ! 昨天一同事合作的项目代码出现的bug-----他的上位机每200ms给我发送命令向我这边下位机读取一些数据,在此过程会按下按键做一些另外操作并给他返回数据:(通信是通 ...
- GDB命令行最基本操作
程序启动: A.冷启动 gdb program e.g., gdb ./cs gdb –p pid e.g., gdb –p `pidof c ...
- SQL Server 性能优化
今天有位网友找我给他原有的系统数据库优化下查询速度,个人总结了几点对sqlserver的优化 1.Sql查询语句的优化,如:能使用外连接查询出来的尽量别用内连接...,这些个就不废话,如果我使用这个给 ...
- NGUI 按钮音效问题
昨天给NGUI的按钮添加音效时,刚开始是自己新建空对象绑定声音的,后来发现NGUI按钮携带button sound组件,直接将音效拖入即可,不用写一行代码,非常简单.但是后来发现添加相同的音效有的按钮 ...