spark JavaDirectKafkaWordCount 例子分析
spark JavaDirectKafkaWordCount 例子分析:
1、
KafkaUtils.createDirectStream(
jssc,
String.class,
String.class,
StringDecoder.class,
StringDecoder.class,
kafkaParams,
topicsSet
);
后面参数意思: 源码是这样
@param ssc StreamingContext object
* @param kafkaParams Kafka <a href="http://kafka.apache.org/documentation.html#configuration">
* configuration parameters</a>. Requires "metadata.broker.list" or "bootstrap.servers"
* to be set with Kafka broker(s) (NOT zookeeper servers) specified in
* host1:port1,host2:port2 form.
* @param fromOffsets Per-topic/partition Kafka offsets defining the (inclusive)
* starting point of the stream
* @param messageHandler Function for translating each message and metadata into the desired type
* @tparam K type of Kafka message key
* @tparam V type of Kafka message value
* @tparam KD type of Kafka message key decoder
* @tparam VD type of Kafka message value decoder
* @tparam R type returned by messageHandler
* @return DStream of R
*/
def createDirectStream[
K: ClassTag,
V: ClassTag,
KD <: Decoder[K]: ClassTag,
VD <: Decoder[V]: ClassTag,
R: ClassTag] (
ssc: StreamingContext,
kafkaParams: Map[String, String],
fromOffsets: Map[TopicAndPartition, Long],
messageHandler: MessageAndMetadata[K, V] => R
): InputDStream[R] = {
val cleanedHandler = ssc.sc.clean(messageHandler)
new DirectKafkaInputDStream[K, V, KD, VD, R](
ssc, kafkaParams, fromOffsets, cleanedHandler)
}
2、数据在输入到输出经历几个阶段:先map返回JavaDStream<String>类型
然后flatMap 返回JavaDStream<String>类型
在 然后mapToPair返回JavaPairDStream<String, Integer>
最后reduceByKey 获得两数之和
完整例子请看尾部完整代码
import java.util.HashMap;
import java.util.HashSet;
import java.util.Arrays;
import java.util.regex.Pattern; import scala.Tuple2; import com.google.common.collect.Lists;
import kafka.serializer.StringDecoder; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.*;
import org.apache.spark.streaming.api.java.*;
import org.apache.spark.streaming.kafka.KafkaUtils;
import org.apache.spark.streaming.Durations; /**
* Consumes messages from one or more topics in Kafka and does wordcount.
* Usage: JavaDirectKafkaWordCount <brokers> <topics>
* <brokers> is a list of one or more Kafka brokers
* <topics> is a list of one or more kafka topics to consume from
*
* Example:
* $ bin/run-example streaming.JavaDirectKafkaWordCount broker1-host:port,broker2-host:port topic1,topic2
*/ public final class JavaDirectKafkaWordCount {
private static final Pattern SPACE = Pattern.compile(" "); public static void main(String[] args) {
if (args.length < 2) {
System.err.println("Usage: JavaDirectKafkaWordCount <brokers> <topics>\n" +
" <brokers> is a list of one or more Kafka brokers\n" +
" <topics> is a list of one or more kafka topics to consume from\n\n");
System.exit(1);
} StreamingExamples.setStreamingLogLevels(); String brokers = args[0];
String topics = args[1]; // Create context with a 2 seconds batch interval
SparkConf sparkConf = new SparkConf().setAppName("JavaDirectKafkaWordCount");
JavaStreamingContext jssc;
jssc = new (sparkConf, Durations.seconds(2)); HashSet<String> topicsSet = new HashSet<String>(Arrays.asList(topics.split(",")));
HashMap<String, String> kafkaParams = new HashMap<String, String>();
kafkaParams.put("metadata.broker.list", brokers); // Create direct kafka stream with brokers and topics
JavaPairInputDStream<String, String> messages = KafkaUtils.createDirectStream(
jssc,
String.class,
String.class,
StringDecoder.class,
StringDecoder.class,
kafkaParams,
topicsSet
); // Get the lines, split them into words, count the words and print
JavaDStream<String> lines = messages.map(new Function<Tuple2<String, String>, String>() {
@Override
public String call(Tuple2<String, String> tuple2) {
return tuple2._2();
}
});
JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
@Override
public Iterable<String> call(String x) {
return Lists.newArrayList(SPACE.split(x));
}
});
JavaPairDStream<String, Integer> wordCounts = words.mapToPair(
new PairFunction<String, String, Integer>() {
@Override
public Tuple2<String, Integer> call(String s) {
return new Tuple2<String, Integer>(s, 1);
}
}).reduceByKey(
new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer i1, Integer i2) {
return i1 + i2;
}
});
wordCounts.print(); // Start the computation
jssc.start();
jssc.awaitTermination();
}
}
spark JavaDirectKafkaWordCount 例子分析的更多相关文章
- Spark源码分析之Spark-submit和Spark-class
有了前面spark-shell的经验,看这两个脚本就容易多啦.前面总结的Spark-shell的分析可以参考: Spark源码分析之Spark Shell(上) Spark源码分析之Spark She ...
- Spark 源码分析 -- task实际执行过程
Spark源码分析 – SparkContext 中的例子, 只分析到sc.runJob 那么最终是怎么执行的? 通过DAGScheduler切分成Stage, 封装成taskset, 提交给Task ...
- Spark源码分析 – BlockManager
参考, Spark源码分析之-Storage模块 对于storage, 为何Spark需要storage模块?为了cache RDD Spark的特点就是可以将RDD cache在memory或dis ...
- Spark 的情感分析
Spark 的情感分析 本文描述了基于 Spark 如何构建一个文本情感分析系统.文章首先介绍文本情感分析基本概念和应用场景,其次描述采用 Spark 作为分析的基础技术平台的原因和本文使用到技术组件 ...
- spark 源码分析之十九 -- DAG的生成和Stage的划分
上篇文章 spark 源码分析之十八 -- Spark存储体系剖析 重点剖析了 Spark的存储体系.从本篇文章开始,剖析Spark作业的调度和计算体系. 在说DAG之前,先简单说一下RDD. 对RD ...
- spark源码分析以及优化
第一章.spark源码分析之RDD四种依赖关系 一.RDD四种依赖关系 RDD四种依赖关系,分别是 ShuffleDependency.PrunDependency.RangeDependency和O ...
- Spark源码分析(三)-TaskScheduler创建
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3879151.html 在SparkContext创建过程中会调用createTaskScheduler函 ...
- Spark源码分析环境搭建
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3868718.html 本文主要分享一下如何构建Spark源码分析环境.以前主要使用eclipse来阅读源 ...
- Spark SQL 源代码分析之 In-Memory Columnar Storage 之 in-memory query
/** Spark SQL源代码分析系列文章*/ 前面讲到了Spark SQL In-Memory Columnar Storage的存储结构是基于列存储的. 那么基于以上存储结构,我们查询cache ...
随机推荐
- .NETFramework类库
.NET Framework 包括可加快和优化开发过程并提供对系统功能的访问的类.接口和值类型. 为了便于语言之间进行交互操作,大多数 .NET Framework 类型都符合 CLS,因而可在编译器 ...
- 【转】Java与C#语言级比较
原文链接:http://www.harding.edu/fmccown/java_csharp_comparison.html Java 程序结构 C# package hello;public cl ...
- 【数据处理】各门店POS销售导入
--抓取西部POS数据DELETE FROM POSLSBF INSERT INTO POSLSBFselect * from [192.168.1.100].[SCMIS].DBO.possrlbf ...
- 安装apache mysql 论坛(一)
安装mysql: 注: yum文件配置: 检查配置文件: 启动:service mysqld start 查询表: apache安装 启动: 查看端口: 欢迎界面: 如果服务了4000次,会主动销毁, ...
- python面向对象(上)
创建类 Python 类使用 class 关键字来创建.简单的类的声明可以是关键字后紧跟类名: class ClassName(bases): 'class documentation string' ...
- Git 分支管理详解
大纲: 1.前言 2.创建分支 3.切换分支 4.合并分支(快速合并) 5.删除分支 6.分支合并冲突 7.合并分支(普通合并) 8.分支管理策略 9.团队多人开发协作 10.总结 注,测试机 Cen ...
- Plugin is too old, please update to a more recent version, or set ANDROID_DAILY_OVERRIDE environment variable to “*****”
Plugin is too old, please update to a more recent version, or set ANDROID_DAILY_OVERRIDE environment ...
- [转]IP地址-子网掩码-默认网关
IP地址:是给每个连接在Internet上的主机分配的一个32bit地址.地址有两部分组成,一部分为网络地址,另一部分为主机地址.IP地址分为A.B.C.D.E 5类.常用的是B和C两类.网络地址的位 ...
- JavaEE Tutorials (24) - 资源适配器示例
24.1trading示例369 24.1.1使用出站资源适配器370 24.1.2实现出站资源适配器372 24.1.3运行trading示例37324.2traffic示例374 24.2.1使用 ...
- hdu 1010 Tempter of the Bone 深搜+剪枝
Tempter of the Bone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Othe ...