以防万一,题目原文和链接均附在文末。那么先是题目分析:

【一句话题意】

给定大小的棋盘中部分格子存在可以阻止互相攻击的墙,问棋盘中可以放置最多多少个可以横纵攻击炮塔。

【题目分析】

这题本来在搜索专题里出现的..这回又在二分查找匹配专题出现了..所以当然要按照二分匹配的方法解而不是爆搜(虽然爆搜能过)。
问题主要就是如何缩点建图。为了使得blockhouse不能互相攻击,那么使用每行的相邻的点缩点,每列的相邻的点缩点,连边的条件就是两个点存在有相交的部分,最后这两组点求最大匹配就行了。

【算法流程】

应该这题也能算是标准题了吧。缩点,建图,hungary匈牙利算法求解,输出答案。完事儿了。
匈牙利算法以及二分最大匹配的相关内容这里就不说了。。

下面的代码简单说明,本来的aleft和aright名字叫left和right,后来发现和STL的东西冲突了。。
fill的宏定义有更科学的方法,这里就只是单纯的抹0。以及for each是从1到n而不是从0到n。
因为习惯问题,数组是从1算起的。

 #include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
#include <queue>
#include <algorithm>
#include <vector>
#define each(i,n) (int i=1;i<=(n);++i)
#define fill(arr) memset(arr,0,sizeof(arr))
#define INF 0x3f3f3f3f char map[][];
char aleft[][];
char aright[][];
int l[], r[], lCnt, rCnt;
bool graph[][];
bool vis[]; using namespace std; int dfs(int left) {
for each(right,rCnt) {
//left到right有路且没遍历过
if(graph[left][right] && !vis[right]) {
vis[right] = true;
//若right还没匹配过或跟right匹配的点找到另一个相匹配的点
//(则right就可以跟left匹配)
if(r[right]==- || dfs(r[right])) {
r[right] = left;
l[left] = right;
//printf("(%d,%d)\n",left,right);
return ;
}
}
}
return ;
} int hungary() {
int ans = ;
memset(l,-,sizeof(l));
memset(r,-,sizeof(r));
for each(i,lCnt) { //row point cnt
if(l[i] == -) {
fill(vis);
ans += dfs(i);
}
}
return ans;
} int main() { int n;
char buffer[];
while(gets(buffer)) {
//proc input
if (buffer[] == '') break;
sscanf(buffer,"%d",&n);
for each(line,n) {
gets(buffer);
for each(col,n) {
map[line][col] = buffer[col-];
}
}
//create grapth [ Marking up Points ]
fill(aleft);
fill(aright);
lCnt = ;
int pre = ;
for each(row,n) {
for each(col,n) {
if(map[row][col]=='X') {
if(pre==lCnt) ++lCnt;
continue;
}
aleft[row][col] = lCnt;
pre = lCnt;
}
if(pre==lCnt) ++lCnt;
}
lCnt = pre;
rCnt = ;
pre = ;
for each(col,n) {
for each(row,n) {
if(map[row][col]=='X') {
if(pre==rCnt) ++rCnt;
continue;
}
aright[row][col] = rCnt;
pre = rCnt;
}
if(pre==rCnt) ++rCnt;
}
rCnt = pre;
//create grapth [ Shrinking Points ]
fill(graph);
for each(row,n) {
for each(col,n) {
if(map[row][col]=='.')
graph[aleft[row][col]][aright[row][col]] = true;
}
}
//doWork
printf("%d\n",hungary());
} }

题目链接:Fire Net(HDU 1045)

题目属性:二分图最大匹配 (如果愿意你可以去爆搜..)

相关题目:2444 1083 1281 2819 2389 4185 poj3020 ...

题目原文:
【desc】
Suppose that we have a square city with straight streets. A map of a
city is a square board with n rows and n columns, each representing a
street or a piece of wall.

A blockhouse is a small castle that has four openings through which
to shoot. The four openings are facing North, East, South, and West,
respectively. There will be one machine gun shooting through each
opening.

Here we assume that a bullet is so powerful that it can run across
any distance and destroy a blockhouse on its way. On the other hand, a
wall is so strongly built that can stop the bullets.

The goal is to place as many blockhouses in a city as possible so
that no two can destroy each other. A configuration of blockhouses is
legal provided that no two blockhouses are on the same horizontal row or
vertical column in a map unless there is at least one wall separating
them. In this problem we will consider small square cities (at most 4x4)
that contain walls through which bullets cannot run through.

The following image shows five pictures of the same board. The first
picture is the empty board, the second and third pictures show legal
configurations, and the fourth and fifth pictures show illegal
configurations. For this board, the maximum number of blockhouses in a
legal configuration is 5; the second picture shows one way to do it, but
there are several other ways.

Your task is to write a program that, given a description of a map, calculates the maximum number of blockhouses that can be placed in the city in a legal configuration.
【In】
The input file contains one or more map descriptions, followed by a line
containing the number 0 that signals the end of the file. Each map
description begins with a line containing a positive integer n that is
the size of the city; n will be at most 4. The next n lines each
describe one row of the map, with a '.' indicating an open space and an
uppercase 'X' indicating a wall. There are no spaces in the input file.
【Out】
For each test case, output one line containing the maximum number of
blockhouses that can be placed in the city in a legal configuration.

【SampIn】
4
.X..
....
XX..
....
2
XX
.X
3
.X.
X.X
.X.
3
...
.XX
.XX
4
....
....
....
....
0
【SampOut】
5
1
5
2
4

HDU 1045(Fire Net)题解的更多相关文章

  1. HDOJ(HDU).1045 Fire Net (DFS)

    HDOJ(HDU).1045 Fire Net [从零开始DFS(7)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双重DFS HD ...

  2. hdu 1045 Fire Net(最小覆盖点+构图(缩点))

    http://acm.hdu.edu.cn/showproblem.php?pid=1045 Fire Net Time Limit:1000MS     Memory Limit:32768KB   ...

  3. HDU 1045 Fire Net 状压暴力

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1045 Fire Net Time Limit: 2000/1000 MS (Java/Others)  ...

  4. HDU 1045 Fire Net 【连通块的压缩 二分图匹配】

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1045 Fire Net Time Limit: 2000/1000 MS (Java/Others)    ...

  5. HDU 1045 Fire Net(dfs,跟8皇后问题很相似)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1045 Fire Net Time Limit: 2000/1000 MS (Java/Others)   ...

  6. HDU 1045——Fire Net——————【最大匹配、构图、邻接矩阵做法】

    Fire Net Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Sta ...

  7. HDU 1045 Fire Net 二分图建图

    HDU 1045 题意: 在一个n*n地图中,有许多可以挡住子弹的墙,问最多可以放几个炮台,使得炮台不会相互损害.炮台会向四面发射子弹. 思路: 把行列分开做,先处理行,把同一行中相互联通的点缩成一个 ...

  8. HDU 1045 - Fire Net - [DFS][二分图最大匹配][匈牙利算法模板][最大流求二分图最大匹配]

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1045 Time Limit: 2000/1000 MS (Java/Others) Mem ...

  9. hdu 1045 Fire Net(二分图)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1045 题目大意为给定一个最大为4*4的棋盘,棋盘可以放置堡垒,处在同一行或者同一列的堡垒可以相互攻击, ...

随机推荐

  1. stringstream函数(i o)

    stringstream函数 头文件  #include<sstream> stringstream是字符串流,被用来切分数据或转化类型 样例一(摘) 输入n,代表接下来输入n行资料,每行 ...

  2. CSS圆角样式

    CSS圆角: /*纯css,设置图片圆角*/ #top2 { margin-left:20px; padding:10px; width:600px; height:300px; border: 5p ...

  3. Eclipse安装与搭建Maven

    Maven的具体参考书可以看:<Maven实战> 下载maven可以到:http://maven.apache.org/ Maven的eclipse基本使用可以在这里看到:http://w ...

  4. kettle查询出来的真实值被识别为null

    问题描述: 通过关联表查询出来的applyId(申请编号),在数据流里也是能看到的,但是在写入到数据表中的时候,由于设置了这个字段不能为空,所以一直报错. 问题实质: 数据流内存在的数据却不能保存,原 ...

  5. 常用的PHP正则表达式汇总

    PHP中的常用正则表达式集锦: 匹配中文字符的正则表达式: [\u4e00-\u9fa5] 评注:匹配中文还真是个头疼的事,有了这个表达式就好办了 匹配双字节字符(包括汉字在内):[^\x00-\xf ...

  6. 函数 - PHP手册笔记

    用户自定义函数 函数无需在调用前被定义,除非是有条件定义的. PHP中的所有函数和类都具有全局作用域.PHP不支持函数重载,也不可能取消定义或者重定义已声明的函数. 特意试了下,我的电脑上的PHP递归 ...

  7. nginx相关参考博客

    http://tengine.taobao.org/book/ http://blog.sina.com.cn/s/articlelist_1929617884_0_1.html http://blo ...

  8. Oracle EBS-SQL (INV-12):检查待定事物处理1.sql

    /*未加工物料*/ update inv.mtl_material_transactions_temp set process_flag='Y', LOCK_FLAG='N', TRANSACTION ...

  9. Oracle EBS-SQL (CST-1):检查BOM历史成本查询(Average Cost).sql

    select  msi1.segment1                   父件编码, msi1.description                  父件描述, msi1.primary_u ...

  10. YUI的模块化开发

    随着互联网应用越来越重,js代码越来越庞大,如何有效的去组织自己的代码,变得非常重要.我们应该学会去控制自己的代码,而不是到最后一堆bug完全不知道从哪冒出来.前端的模块化开发可以帮助我们有效的去管理 ...