1.首页介绍下word表格内容,实例如下: 每两个表格后面是一个合并的单元格

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAkUAAABoCAIAAABwsRNXAAAHqUlEQVR4nO3dTW6jwBoFUHb1JC8IvWVkB2E1rODtwtMeJFIUKYoidY/8BsZQmB/Dl66OMeeM3EC6HXFV11Xgpvj8/Pz8/Hx+fj5Ne3p6enp6Sv84czAA/HvF+/v7+/v7TJ89DfzL9wcASxSvr6+vr6+r5mcAcG+K//z3f79+/Zrvs5M1RgDuW/Hy8vLy8nKzzwDgnhVvb29vb2/6DIBNKz4+Pj4+PvQZAJtWfH19fX196TMANq348+fP79+/9RkAm1Y8X/z0OwGAuKJ7BQD3bWmfZexNHpTYECM5BOgzMhIbYiSHAH1GRmJDjOQQoM/ISGyIkRwC9BkZiQ0xkkOAPiOjlbE5VoeirHO9GTbEgEPA9/vsWB2KojhUx8uGukz/xJ5Nx6Yui2F16TMa+oyAv9VnyeCUuc88OHRDvj8/c7r3aUlyZIMrw9ikIVnaZ2VVHdoSS/vsUnbXdVeV562H6niqk9fXPzVZjEK8CbPzs8vJbU93WU3Nz5zuvVn+SUg2aE3FZmWf1clH626kqsuk4y4DVV22PZUuVfZ+/nJs//N6Glwh3oQFfXYdjfZ8O917Nt9nssGoNDbDkKzos25gGltvTIop3T32uvfj3c9dLSwI8Sbc7rPeRxanm8ZMn8kGU9rYjIZkVZ+djudFx7GVpGTFcUGf9ZV1twZqxXxbbvfZ2McXp5uZhSPZYMo5NlMhWddnzRStHFlJis7POrK7RX9rfsbeLJ+fQWtqftbsHR43MBiQ2ktiXTMdq8Pi+dn4ndzNW1z76/GzVl0/O4dn9PoZe7P8+hm0pq6fNXtHj+u7usf6WB2KXo2d1wzLcnGfjS9TskWL7m9sV5jLui6db04n3z8jxP8PQkZiQ4zkEKDPyEhsiJEcAvQZGYkNMZJDgD4jI7EhRnII0GdkJDbESA4BK/oM4J/JP/rxaOZjY37Gt4gNMZJDgD4jI7EhRnII0GdkJDbESA4B+oyMxIYYySFAn5GR2BAjOQToMzISG2IkhwB9RkbzsUmfTw4pAw4B99Jnns73kKZjM3z4a4887Jw+I2AYm3Qkud1n6cPK0tfnp8jM7x3+bcavB3NzVJrqszN52C19RsBUbJb22fVDO5NHM5b1rb3JvzR8zQMI9Jk8cNJnhKSxGY4kS9YbLyPSsTocyvLQPnT4XFjze6+fim38ejBr+0weONNnBLSxGR1JFl0/a9qpLrvLIf2HD0/tfRrI8zvyY1b1mTzQ0mcEnGMzNZIs6rP2UlmzwFjWx+rQDlLzew1bj+2b8zN2S58RMDU/a/YOjxvRrCV2C4yHQzJGze+1pvTQvnn9jN3SZwRMXT9r9o4eN3CsDkXvvo/eEDW/l0c2f79+aux2V/ZLnxFwL98/4yGJDTGSQ4A+IyOxIUZyCNBnZCQ2xEgOAfqMjMSGGMkhQJ+RkdgQIzkE6DMyEhtiJIeAFX0GAPdsaZ99vzzZG7EhRnII0GdkJDbESA4B+oyMxIYYySFAn5GR2BAjOQToMzISG2IkhwB9RkYrY9N7cDl7ZsAhQJ+R0XRs6nLk/9TXZzQMOARsqc88tnhzvj8/c9L3aUlyZIMrw9ikIVnSZ3VZHKqqbL7M1o5G3fOt2k29Iw/V8VQnr69/avIhaeK7ITdicz7F7Ukvq6n5mZO+N8s/CckGranYrOqzS/scq0Pzqi4vg1WyrnR1ZPq6fXr15dj+J/U0suK7IQv67Dog7Vl30vdsvs9kg1FpbIYhWTw/a+ZSI+tFyab0yLHX6bbk566WFMR3Q27HphcZJ53GTJ/JBlPa2IyGJN5n3cJhUazos76y7lY/rZVv0e3YjH2IcdKZWTiSDaacYzMVkmifjS8crpqfdaR2u/7W/Iy9WT4/g9bU/KzZOzxuYKLPmm3H6rB4fjZ+D3fz5tb/avy8VdfPznP60etn7M3y62fQmrp+1uwdPa5vdL0xubuxLBf32fgyJdu1KDZ1d3NsXTrrnE738QUhNmdL3z9jc8SGGMkhQJ+RkdgQIzkE6DMyEhtiJIcAfUZGYkOM5BCgz8hIbIiRHAJW9BnAP5N/9OPRzMfG/IxvERtiJIcAfUZGYkOM5BCgz8hIbIiRHAL0GRmJDTGSQ4A+IyOxIUZyCNBnZCQ2xEgOAfqMjOZi0z3ubuwpQeybAYeAn+kzz+LbienY1GX6TIVBo0nIzukzAoaxSUeSZX2WPBymnt84+Jfib5wtWDQq9R7p2SMhu6XPCJiKzfI+6z5oJ4/jHN3Y/b3D1zykRaNS/7nkEsJJnxGSxmY4kqxbbxz9nJ1uvFpBMlo9vAWx6aVGQjjTZwS0sRkdSRb12egzpYcbnwZy/D7clZujUjp9lxBa+oyAc2ymRpIFfZYMSN0n7dGNg87k4c2PSnV5fW+jhHCmzwiYmp81e4fHXesufhyrQ9H12XDj5Z/5a++duzczKg3L7ExCOOkzQqaunzV7R4/rS25kLMt0VjbYyO5Mxqa3Hj17Fyy7pM8I8H1qMhIbYiSHAH1GRmJDjOQQoM/ISGyIkRwC9BkZiQ0xkkOAPiMjsSFGcgjQZ2QkNsRIDgEr+gwA7tmiPgOA7dJnADwCfQbANjwPpHv1GQDbcFVg+gyATdJnADwCfQbAI5jvs/8DFVHcaD4N2FkAAAAASUVORK5CYII=" alt="" />

2.引入win32com模块

3.具体代码

 #http://www.jb51.net/article/70318.htm
#http://www.cnblogs.com/graphics/articles/2953665.html
#http://shouce.jb51.net/python/
import win32com,re
from win32com.client import Dispatch,constants word=win32com.client.Dispatch('word.application')
'''
设置Word的可见性visible,默认情况下,你看不到Word程序;然后设置Word的警告信息是否出现,默认也是不出现,这样你在使用python控制Word的时候不会弹出Word的警告信息。
'''
word.displayalerts=0
word.visible=0
countdoc=word.Documents.Count
print(countdoc)
doc=word.Documents.Open(r'C:\Users\Administrator\Desktop\test\文档一\1.doc')
#doc.SaveAs(r'C:\Users\Administrator\Desktop\test\文档一\1.txt')
'''
t=doc.Tables[0]
#print(type(t))
tt=str(t)
#print(type(tt))
#print("")
#分割字符串
strs=tt.split('')
print(strs[5])
'''
i=0
while i<500:
t=doc.Tables[i]
tt=str(t)
strs=tt.split('')
print(strs[5])
i=i+1 doc.Close()
word.Quit()

pythonword1

4.遇见的问题

1)。打开word总提示错误。原因是我Documents和Open首字母小写了

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAncAAADJCAIAAADO94MZAAAgAElEQVR4nO2dX2wcx53nC7iHAHnQW94M3MMC+yDAQPYpVC2yi4OEw/2Lo8OuLVmSnSB2KmSS272sLToOsPAu41skuLWuH3YDhNw8KbEoWrazCdF3c0BWMhwbQ5mU4tvQFt2RY2ksihT/iENR/Dcz7Hvof1Vdf7p6ppszJL8fDAhOTXXVr6qrf9/+Vf8p8n+vz1auz34y/+A/PTnw4x//2AcAAABAQZBfvX/3V+/fvX1v7b+c+iZUFgAAACgQ8tZv7701fa+2+PCxM9+GygIAAAAFQt6dWX53ZvnO8sZ//cpfQGUBAACAAiFXb9av3qzP3d/88699ByoLAAAAFAi5duvhtVsP5+vbJ77+PFQWAAAAKBDy/z7dfP/O5r0HjSe/MQiVBQAAAAqE/Pbu9m/vbi+sNU8PfBcqCwAAABQI+WC++eF8c+lh68w3X4TKAgAAAAVCPlxofnivtfSwdeZb34PKAgAAAAVCZhZbMwut5Yetp74NlQUAAACKhMwsQGUBAACAUiAfLbQ+Wmgtr0NlAQAAgIIhHy22PlqEygIAAADFQ7zFpgeVBQAAAEogVNn7UFkAAACgaAKVbSKWBQAAAAqHeAsNbwEqCwAAABQP8RYav1tsYMYYAAAAKBzyu8VAZZtQWQAAAKBYyM3Fxk2oLAAAAFAC5OZi4+YSVBYAAAAoHvLxYuPjxcYKVBYAAAAoGvLxUuPjpV1WWZcRQqjTYRHU8Swzew4lAWKlXLJtUeURG6k0Jld7i7QmhLndtUdDYGbaOAmHpox12RghlY5GoAW7U0uIN03JGCFjhE6rxk9VnV4UBZWv6jHPoZ35CgC6C/l4qfH7pcbKxi7Hsi7brSPHZYm4epy75XTCZRaeenfwJEEoEIfmaaXLkk7Z3R7KZaeXmZtvSFxFZXf0z2W7pbIB3jQtT02dSuljQLlfVDsQgD0D+f1S45PlRl2jsmFEE41xlwkRIRfvJEdBkEgdz0ttzIVHzA1VNh0yRcGcoV5lzBfGNIzpYq84m1LDUp7aZYkp/Bbp9ga1UsqiNhmq5tGVr7RQG+PyfcedRqj7QepoKyu5TLFhhpg7qYPSIP4IOshxuAZ7XPlyqtFOZb95DmVOvJWiWQ5VpDoVQqqu8HUsSXGrhHBBVfjrGCFj3DivhIFjFERGP606NMxMWM1CZWssKjwJB50KIWPUmY5/os6qKT1GVllDjBs2c4yQiuNUoqJU9vCNipqWXb7cb0FmVmVyfyabVKW9hXAW7GXIJ8smlZUjBZeF3s2hnHN0mTAZG7jDIMVlzPXFKUaLGWN9vfHvKjWKDub0r5F/VlcqBNZ82OY5NJYAdXvjWqPNMkMrXfm6dunS+QTPoaLQqvuh/VhW+qrsf2EHC6difIPjUyeXPzPjq1Laqeu31P9S76kDofQM56pDRefuVhNhS3LWmBBpBYIUpNQYq/m+77JE+exmjGsur9yxejmVlHKH/+vSA3SxrJzuVhM986ZpItgae3xjLCuXr+s3b5ryoitbpbK/Ry5QANAO5JOlbZPKRi4vcGWJIJlVMCWJckp0cqqLZbX1CgWkvXxikWxAmKyOCLmmaKayde2Nz7IjZ56lshlT5bYqq+i4RFl1/VCqygrBqTi3wReTmCc2IUtltf2Wsd89ZSirIJCQaMYyikH16uv7vl9jaUlIpaw6NFNlxTCRV1le4bxpGnzVpcdf7VRWH2Rr7PFzqay+3wSD5Q7UYLsXAeg9yK2lxq1AZb+lVlmXUcdzGXVcRh03cmkFqawBdb1CAblVNuWs5VByz6hsW6rTicqmDMi4fszNbcinB9LcRrrTuqKybpU6qy6rOG6VOrVIJEpXWT72FRQomcIVf9Klx187U1mtPT5UFoC2ILeWQ5U9o1FZ32WMMep4vssoTTya6D1FJ6gQOcFn8zOKWjT1BtirLH988rOOOhvEeDfZQt3eDJV1mXSxUFe+rl26dN0kmlFldfd7KeyU9pg4M2mcweazR7MRcbaom+LE9HSC2k5dv2WdXVnfOlNjrMrotOfXGK3o1E4UJ4VIuIybwnWrqRljl6UuRvIyvOpQMZblt40VTpcekGvGmEtxWVC13h6f74oaI1kz1bp+a0tlMWMM9jDk9vL27eXt+kbzzDdfVKusF1+RFMe6esaPnzYUPbcwocisLs0q6k2XH18NTb4kF2G99CaiZ1fbKdzlxKXL7eVrDa81e+KzJSr1Upevbpc+PV2ORT/whaVMkuzU9o/WHtmYyEjKGH+flifVEGZQDRXBTrnfMtobbWUls6sODcM4IZ7TzKAGeqmaWeXuHiJVJl6alVSWu3uIjFFWpXFRTiX8Kt0YpUxP2xPVoksPijLdzZSyR2wad+KqK1/Vb3HhrJaUli20uPsJ7GXI7aWtW0tb9fXG6YHv4q0UoHDKfDTJjr35IEhqZjgzfR+zN3cgACHk1tLWraXN+nrj1MALUFlQLFy82s1YpPtKn5MkyhSvnurS9zMIZMEeh9xa3Li1uFlfbzz5jUGoLAAAAFAg5JPFjVuLG/X1xkl2FioLAAAAFEgQy27U1xtPfP15qCwAAABQIOSThfVPFtbrD7cff/Y5qCwAAABQIFBZAAAAoCzIrcX1W4vr9fXtx5/FjDEAAABQJMl12cdN12V17z3Pmw4AAAAcIMjtpY3bS4HKmu4x1q3HmTcdAAAAODiQ20ubt5c2rVRWXvcxfzoAAABwcCC15c3a8ubqRobKatZ9zJ0OAAAAHBzIp8ubny5vrm40nsBbKQAAAIBCgcoCAAAAZUHu3N+6c3/rAVQWAAAAKBqoLAAAAFAWZPb+1ixUFgAAACgBqCwAAABQFmT2/tbsytaDTagsAAAAUDDk7srW3ZWtNagsAAAAUDRkrr41V4fKAgAAAMVD7q5sh7Gs/t1PZIzw/8cfOZvuU2ILVKRq3B0DulJpF9HtZeXAyExRpvdaHwb22FtV3iHQrWPK/rju3ELlYMgsVmnbvvRg8hFn0zmWv3ZYlK/pzMwMmX2+a868QOdG7tzfurO8+WDDpLK+3R5N/WS/74vFsiMsd7D9IOhxhSgcw+5uu3OUrtzeIZp/7dxpZjp6SzdhY1tmA9trQl4MXiaX0yywanO9htLM5cg/7S0PlkpUbm5uiM1B2rY/zFu77ifD/7quaGP3GUZCZrsUGT5Z2Pz9wubKwwyV1VWf+qlYp9YGmQ7LpgTDV0O6bsfsV+QBHaf77R5RmVpi4yIt0/OiHE6GQWVfr6V/4VO65fcNe6dYk2xEsb16940HMyiBuUyDEmfmzOUP7bsx5UwMhbfhH9pT2QKdG/mXD1f+5cOV20ubnausuaZw0dkxQsaos+r7NRY2oNOle4S1bOXOzdvdBt9h/l/eMbmOz7zrK6Tyu9WoYyW8aRpYUuz6DfYHuWHbVIpOyQw5DWXa22ODroGpkdCGm7axXNXbu3FAybW34abldmXuFN3RpKvXnn3jweQ+UR4alg7QshvtR7jlEZoyXpnTxgmnUgwdYkPBzu3CxMKFiYUbdx/q7n6S92Lqp1Q20z6osZSjdypqYciJyzRjNJdDlPPImxj+1+2YXcPcmd40LVxllce53J82njHTQSjz22QuZHfIh4C5WPvqDCXoejjZalcOKJ0blQ22T7RUOBuFyPT7+9KDqcdDO6cO6Yp03ZhZgrJMc1GG/Wv21boxqTw82zj2C3Zur04svDqxcOPuwxPGe4zzGqrOv+rQquv7vlMJ4yqnwuLzQKcStyGdSKe9KCCLflp1aNRCVtOOUd0/soW6YarbRP7fPNzdamgtnfaSs+CK4xtjzaRPKpRGbdTldyrUqcXdkj74FSrL9WEqdsmFzXGYPRDFPrQ/nMz1+vo9Yo/OQcvZst20ahOzbSbHUf4BJduQ6X9tGpWJ8miyGVrmAvMakKbHPFiqq+Vesh+T9t1oP7xz0eF+TFmi65AOrWrTuY1eXRy9unjj7vpJC5W18X2mPKsOrTi+77IKZeE/4diKR63v+36NCU4/0KQgpcZYzfd9lyUqkp5vMYwhw6jS+WLdJubC5a9+SudqLDXRJKsgn+JW00Io53cqnLiuOpQ71DX5EyX2pqk8SWgenbodnTkQDd2l8yY2tRsOP5ui1I1UlWM+gO2VwNBkw7bCVuUfUL7qhL09X5MqUPersgSDu8zlnfeTBzP81Iau8OPQ0EWWR5n5k9c2GwPkVvj6Ttt15za5PDa5PDO3cfIbg7nuMdZZb0xxWcUJZl2cCnVWozEanSEm+apcKCbN0qRTwqFvMi9zIOr6UbnbzC3VDymXRconTzSpZnTj60DC2bEuv1MhrCZkSH1Nd1p6JAlV2B8PNsdhXo9peVgairI3L6/TN4wEe8+SeUDpChFrL/2A4vsn09dYNt+mw80HspzTplL70vQpveLBzL3dxpi0P9gtR7hNyZb2G0oz72Wdf9hl50YuXbt/6dr9j+Y3nux/wXLG2ODaMketU2GsSljN96YprbJwaJY/RpW/KverrvcNrVZuqMwZKp8UyPqZ101TZ8dZsamfqbJ+elZQJu+B5xuHtfKvrkbL/Zi5U+RfLcdtpm2yqZbHRS4nossQJ+7OAaVz7pl2WjbK8GveDrG3Z697MEvMDk3+Woh8GgrMa1t7Kusb93Km8Xy2zp0beeN6/Y3rdW9+89TAd80qa979qXSdaDkVSoMrGasO5a4sigohCoA8Rrmg0BdnU3OprLkJ5nbJOe0GkMsqjvKOiQzVtJhhdircRJ/FjLH5rubMUWg4bJQ9L/9kls/MIzNzsNk3xJyBz5ZZqeykOnFVugycypZ7QOnamGmnYae0IRU67GvZlx7MZrC1obKZ2WwOPfNRaW9bXpVN1du2TyjQuZE3f1N/8zd1797m6SyVzazMt+h9t5rc+C5cyRAnMKMgjJ8y5dO52+jHCKmy+MKG2bXZHN722tyWyvreNBX1Mt1GkswqKxJ1+YMneViVRoniVR9V+foqbOFHgvxX2RuWTiSzzzMTDbW0R3vOK9MG+wNe2eSyDyilkTZt7LDbLb05ny5/dPbsGw9m4+KUPWPoH5tsmYlmb5DLNkMePqfuAMm0wWCb4a+cU9kD4f9vvr/65vurmSqra4l5lBuGS0lo22lhg24H67Lphlq32r7LmMef2YXpUpQ+Lpcrsam0PSyHU97xn1mO7qec5ndE5tiW92MnFhrcpfIf2QBlimzYXvdgNnYaBpjyqy5daQ9fqW6/GCy0tM2AzSHfxu4r1rnZxrIAAAAAyAtUFgAAACgL8ub1lTevr3jzm6cHTPcYAwAAACAv5I3rK29cv+/Nb5yCygIAAACFQt64tvLGtRVvfuOU8XlZAAAAAOSFvH595fXrK978JlQWAAAAKBby+vX7rwczxv2mNywCAAAAIC+WKqtYcrKtdAAAAOAAYRvLCm/v6yAdAAAAODjkUVnpBfdtpAMAAAAHB1uV1b1ZPm86AAAAcHDA3U8AAABAWUBlAQAAgLKAygIAAABlAZUFAAAAyoJcurZ86dryR/MbT0JlAQAAgEIhl6aWLk0tfTS3/uQ3zkJlAQAAgAIhY+8tjL23MDP38CSDygIAAABFQkYn5kcn5m/cfXiSPQ+VBQAAAAqEvPru7Kvvzt648+DEs38FlQUAAAAKhPz017Wf/rr24Z3VJ575DlQWAAAAKBBy/u1b59++9cGn9cef+e9QWQAAAKBAyPm3b59/+/YHn9YfRywLAAAAFAr52Tuf/uydTz+8s/rE7l2XdRkhhNqvi6fI7zJCnY5WI/AcSgghpNNyulV+G8QmEYblkgAAYDcgF6pzF6pzN2bXTnz9uV2MZV2WQ2XbyG+L59BSVbCQ8h1ahCq6LD5TcRl0FgAAdgPy2uTia5OLurdShMFP5JJdFkZnwq9icBQkUsfzUhsnkRRhroVqavIbYsRkA0opdaIU6jgs/iG1kUIF3Tgzl9uLmyV80+Y3lM+1iw/Q1f3GZ5aiULm9UvbEKpdxhnjFCDcAAAAz5I3frLzxmxXv3uapgRcUsazkjmNn7VBOVLg4KfzKiRBzfXGK12bGOCO/rF58istSpwK80gvtUamsy58xJLkFmeLiS11+Tfl8gufQrH4T67Jor460ypYzNwAAAICH/Pz9tZ+/v/a7e1unB76rnDEOXLxDAz8exZR69ZW+qFIyvXxWftVMLBdUirE1b2nK8IxYMx07JkG9FOYq8ivKVwSb3BZyv6XqzWpvjlgWKgsAAOVDfvGv67/41/WbC9tnvvmiUmVdRh3PZdRxGXXcyOH3osoKm3OxbLoko8oKt1WlWxlZxSUb8yvLNzQ8n8qmrc7MkpSCGWMAANgVyC+nN345vXFzsXHmW99T3/3kMsYYdTzfZZRSbhqTVwRRPBRqITh5aYYzCMt4x2/OnzETy28dReFxNuOMMS/nnkOl2NShwTVizzK/bKfp7mitykbJLotr0LVXi+cwboYZIgsAALsAGf9gc/yDzY8XG099W6OyXnwFVhQI9UwpP40pKqcwwcnES62yyuryp8vnVEddrUMpY/z9Rp5Uum7SNdwwFc4S6cquKr+2fI2p+n4TfjQXkgF/O5lFdgAAAJ1iobJ7nIIf1dGEmwAAAIDMPldZLs7s9GYf9b1VAAAAgJ59rrIAAABAF4HKAgAAAGUBlQUAAADKAioLAAAAlAVUFgAAACgLi7dSAAAAAKAtst+wWAJ515dVF5HrudVU/tACVQEFrguL9VwBAOCAk71aQDmUtV6sPea3VRSwLizWcwUAgANPxsp33VpfNn4FRPD+ZP7NErnWlzXkdyh13HgLi3VnVevCYj1XAAAABjJWce/e+rKizknBoP36srr84QLvXvRz1rqzpnVhVWClOQAAAORCde5Cde7G7NqJrz/XQ+vLBtso159JCrBaX1aXP9+6s5p1YbGeKwAAAAPkZ+98+rN3Pv3wzuoTz/5VD60vG+Virvqqpv36srr8udedzSmTWM8VAAAAOf/27fNv3/7g0/rjz3ynl9aXTQpS6qn9+rL6/JwNFjPGee9qxnquAAAALFS2W+vLxpVollpN1aBZb1WdP7gyzK07K14z1rQg75KuWM8VAAAOOOSnv6799Ne1D++sPqFTWQAAAAC0BXn13dlX3529cefBCc11WQAAAAC0BxmdmB+dmL9x9+FJ9jxUFgAAACgQMvbewth7CzNzD08y1fOyAAAAAGgXcmlq6dLUkvatFAAAAABoF3Lp2vKla8sfzW882T8IlQUAAAAKhLx+/f7r1+978xunoLIAAABAoUBlAQAAgLLYEypbwHq0u4KFnekXHx+I11Ukb/qgDt41CQA4UPSEylo43u6vR2uHhZ386xZd1stCW4gg8k0MzjEKbzCEGwDQs1ipLB+L8O/3ldeX5d1otPydl6Qzlo7hpEVthDfsJ4mCeinXtVXaqVszp1vr5oaVcVbzL0zO2650PweplLLIFm1Xi+vj5tsvmnV81RhD13LHDwAA9ADZKivFIhnrywp+lVs2wHMo70z5N++rPLF2PVpdvTo71XRv3dz00gHR17ztUvdz3MvRZnE23fq4OfdLxjq+cmN1u6Hk8QMAAD1BpspqgjO9Shm8pDLdV3pJ3Up52nrVdhrWf+3aurlKlc3ZrrSlfO9HJwFBLWE2zfq42nJ839eql2kdXzmvWmXLHj8AANAb7HOVNdC1dXOVM8Zlq2zecnzft1EvaR1fReldGT8AANAbWM0Yiwu3EnkGknfiyWyeOG9r9JLRt6R47Xq0unp1dmrp1rq56S3ilfvytUvdz1qV1a6Pm3O/mNfxVbS3S+MHAAB6Aqu7n/jZRuXdSZp06jjBlcr4jqFkcVdCxMty8gykbj1aXb06O3V0Zd1cu7u9rNol93O8Xi5zo2vEHn8/kbw+bhv7xbjIrnqd4O6MHwAA6AF64kkeAAAAYF8ClQUAAADKAioLAAAAlAVUFgAAACgL8vq1+69fg8p2k+C+nW5bAQAAoHigst0HKgsAAPsVrOIu0Jqasvw0R0YsP5lF/cmhQ39y6FBraqrbrQcAAFAw5LWppdemlj6aW3/yG2f3k8ruzM7qRLExONgYGAg+22fONPr6evCzfeZMbGRjcFAn2zuzs93uaQAAAFrIa5OLr00uFq6yHnPOO0tFlSa+JyhkZ2amNTXVGh8PtTNQzePHuy6Q3VHl48eDHgiVeHy8NTW1MzNT1C4AAADQBmTs6r2xq/dm7j48yZ7vViw7QV3lui079Xpraqr1o1N//eUX4hi0Z6PPXv6EkXEUE4dxcL2+23saAAAOGOTixPzFiXmdyk5QxyHnJxzXIY5DHIecn/D4n5zzztKSc94hjkNCpYy+CrFskOiyuJxIVr2J82GK85PP/I+xQ9+78cJIY2ioMTCwfexY18Vp33+2jx1rDAw0hoYC6cX8MwAAFAsZnZgbnZi7cXftJHtOGctO0JQocnGn6zrEcehE8L/LvUN2yTmfmjFecs7zSvzLl662rlwJItTlvhNd1xt8kk8U9bauXMGcMwAAdAIZrd4drd69Mbt28utalU3JZ/LVdXUXX1Mqu1Ovrzz/tzdeGMGU7178BBPOoe5inhkAAKyxUdlkltjPo7L/53uXg1B1L92R1N/f6O//pO/ofH9/g/88cfS9L30l+Xr2yeG+Z5rDw80fPDP82GBzeDj+3His750fDDeHB38eZBgebgwNNVKl9fd/0nf4gyfC/391+PCvDh9u9Pd3v/mWonv8eBjs4ukjAAAwYjdjHMwJh1+FGeOUygbPzPRCtHq372igYatf6nvvS18JFfGRR4af+UHr8uXW5OTtF4/8z3+cDK9E7vZ6t8KPyrdS7MzOtiYnw8/ly7yQ82q9a2cw20eOaH86cwaKCwAASsjFibmLE3MzJpU977Lz0V1L8T1Nnhul/PSzL73zyLPzJwasnPUXvlCU35989NFfHT783tNnA+1pvfrcNw8d+ref+UxZ65UWuN5tvNZ6sA+KePdTqMqRHjfOni1Wg7cptco5MNAcGcHVXAAACCAXr85fvKq9x9iXZoxjWleuNM+dy+vHt//4j/PlP3268cTRc//5vzWHh1vj40FsV3qvlIwQF+/KGxbDmHh8vDk83HzllUZ///bp00UJsHrHHT/ePHeudeVKqe0CAIAeJ0Nlg8d1khuJfX9nZqYxNNT2YzaGicdGX1+jv78xNNQcHm5NTvJPlSjfSrFXEQNZv6vvMQ4i4OTicRlye+xYY2gI0S0A4GBCxq7Ojxlj2YCder01Pl7gBdfto0cb/f3NV15pXriQ0tSDRk+tFhDq7oULYch79Ghhe/zMmdb4OG5RBgAcKMjYe/fG3rs3M6dV2Z16vTky0vk7IrZPn24MDYWaClfL0VMqK7NTrwe62xga6nyeefvYsebICAYAAOCAkKGyrfHx9ieHjx5tnD0bTv/Cq+4XQtEdHm6cPdt2pLt97FhrfLzbTQEAgNLRquzO7Oz200+3qawXLuA63AFhZ2ameeFCe4q7/fTTB/lKAQDdhYxlTKGlMmTmB0rUKps3hN0+fRrKCgLFzTWrvH3sWOutt7ptOAAHFLNwBr/GeeR/gA0KlW3+0z/ZesmzZ1vj4whHQIqd2dkgwLUcSM2LF9utymVj1Fkt0vjO6DV79jp7vT+7Zb+2XjJGzJ9UZv6flOh2bswBIa2yrfHx7Pjj+PHmyEgPi6ubvDJCh/gqidRLI/YryXs1zJ3TMfGTVzuzs82REZuHqvnLtG41OuYrjjdNWc1UlzdN6XT6Ma+4BDrtedM0Lq34ptrZ4/suGyNZZrjM2ki3SlS1FJa/d1D356pDBW1o//h1KoSUqQGa8VA65nplpZT1VdbdtkNYgzHBoZq/i3IcLDlKkB6zLARBZX/293+fMVE8cOIf+p4r3IgSSN50aMiSaGvqBYg9hkMLsI1voufQEoU29dIN3/d9v3X58vZTT5mnjnfu3PGDo64a2TlNyRgxq6zvu0zlZN0q7zpdtisSa7DH931/1aEVRzRM2nb37NTiVIo5FgoqR9OfNRaPE7/GOhNa9R4p1/7S+1k/Di1Ulk/MDHktUBvjTVNSdf0aa+tEpNODxakodFrlvTpFUNnf6v2g90d/9PTnPsdcQb24eFAwjI+ZgrAmHTpGbzQMk6Otww2TVwQryg8Subck8tIR586psuFJjNdeu+I3HQeGhamUssgWnZ1xS8NymPRmR6nj1G9wpDTjFEw6RwtaHxgavHgy2ifcJvZ2cjhUNLKSxJRPv/Q5799/Uau1L7/srzq0ahjjQUSYrlQTzmpVNjCJjBFSoTRO58MjKTMXE3NDUVmO/sw9jMtTPoWrl9VcVnHClAoNG1tjfL1xaM4XEp6OVJkc2ynza+1Px4jJKY62H2pxpVwV+nKEeqXOVPazuj95leXzaPajur1hOnVWk44iY8zNaX8YEE/HXSHItsJ+Q/m57DfaaR/O6iRWp6ZtBLUmY+xVVj5YIpSDyhcnxlKnU06FENnblBDOJir7ta/9pc79vffS/woM5mdiHSq++Jd7S76oEcbXNnnpOC1+b7+u/NiQMMVlzI1yeNzPOVU2/pq3XUILYus9hyYvSWYul41/jxUfU8Zb+KLk+5pYls/Dr16gxJPfnhWZyp0nBEZEjiO/nZEtkrWBIw4OiRp767tDupG288HXjMebWmWVZ8o6leWPdreaODL+CPSmqeDgRPsDR6YrR2ePn8QcvHfgL1lxU1irDg08ZhSlpWbOZZ/lTVNeieVfDSkp+7Uxlqof/JrLK6WoRspO4MS4xjL7OTBQ0Z+iysZfdfvR2N5YZYVactnvVLiRuerQMdG5mMZDKrEN+3XRl204a1BZQ4zr57vKqzfGVmU1B4t+p0gTY4LKai6jiOu8FEGisn9z6lml4/vbv/hJkj3Wea06qoNIXSzrRxISyFayuV59pS+qFJvzEaXK5mxX2lJeZaOTgKCWMJuiIxLFUsXNwvIAAA0mSURBVJTj+752xlhYvsA8yWFWWX7jTuwMf1apbGo06y7/t/73qfYuYskqoo9luUukgltMOQiuFWovoCpHbw+vCm41UiM5ro1VNhKbYCsblU0ySAarIgmt/QaVzbxEmqGy0lyFsJv03tbcn8lX0340tFd9vTyX/akzjMz9pS2/Hfu1h79NOGvQUYOa6so0oDXGUmUNB4t6p7Q5paxyYR2RqOyFLz+hcHz9/1GtXvnVSIfLqOO5jDouo44bFbvrKuvFU8Clqmzecnzft7kum4r1laWrZox96R3RndgZ/myhsr7vN15+WXGz8Y+epW0dGPKZsuC+4wNSMizyrcYDMtMLpGIytT2inwr8QjdVVmt/HpUVbh9NGVmgyioiIfWMsZ1jTbc3mGxPW5tTZdOzxOL9BIpITtXP7dlv8A+mcNa3e5In71Z6tJfYD7bKvtxf6LqqKlzGGKOO57uM0sSD68qPvpkmKqUZVJfJAV96C8VMqU27kjAxNY+sVlntfIRRZeX1bkU709O0ivbq7n6KZhHiusJMbdipNMX386jsT34iTuO4TAiPdDPGvi8JSXhjhfS/4A3F+DLXdSNdORp70gd8MnvMNSeZCSxfZQ32Jz+l7iqS+4E/fYlnuY3liGokdovR26abINicdKNuP2a3V7qFKpf9qVtpZOUz7QKu/Pbt9xVNUNYbY4hl+Qz26ZnoLrHr54q0E++6yz38TjE6Ex3dmDFu/d2fc7OGna2rqsSLr4SKzVOXz0+TiuXr1n9NfhNDV105edslr1/LWLJ6rSusaBuFj+ma21jvVi6EQ3VWwRcjyGpiLxGvoue2M9qKq5if5kpmFLUzxpOTvnAjA5ECAq3KmsJH9V0SmplD4Se1/eZy0vYk04DRKTb/lbt7iFRZ8BON490aI9w9QayWtie+apuYFxUYxnaaGUiT/TX5LiptP3A3DVFWFe8JV5Sjm2HWlq/ev7Z3J2W3N36Sh3/6K7/9vlMJm58uRGm/ofyc9hvK0dYr3dmkmwQmhd1jrDYmPcGTvrnB0NLoYFHdBaYbDBYS2727nxrf/36xtYLeofhVBY33wu/U643vf19791Nn77vu1rOJOnrNnr1OL/en7nEgnl54dtagkfJPhceyfm/vRD/De7WJ7ZM828eP4/Xu+w/uWaAiT990yt0aHze9oeLllwu0AYBdg3vGpvuPO4P22aW3Uhjf+b799NOtK1cKNwLse1pXrpjfALV99GjwVgoAANhP7Ms3LIJeob03LAIAwL5BtVrAxYuZPjH8DA42R0chtyDFzuxsc3S0MThoOZA6WC0AAAB6Gs3Kd2+9lWu50O0zZ5qjo1j57oCzMzPTHB3dPnMmx8g5ehQr34GSuEkybtJJZcjMD0AbGFdxN77eXe00jx0LA1wo7sEgUNbG4GCuBYnD0fLUU5gIAaViFs7g1ziP/A8AnaNV2YDW+HiuoFahuCMjrampDp/QOMC4c4Qu99B97+7cvzmy8oup5shIe8qahLC4EOv7vbd/89It+7X13iTE/Ell5v9JiW7nxgDgZ6qs7/s79Xrzh89u0T9tz5/ys8qNoaHm6Ki96C7T6NhgbK7gG6zdufjAy1/yMrU8qNw5VflrLKl6y6Fzxsezthxakx6LiUuoOd6WQ9tuiA079Xpraqo5OtoYGso1G6z8bH7hi82RkcwBsMaI3OoC8/cOyv3re05N0Aa21m75y5TcLFMD1PaXj7leWSllfZV1t+0Q1mBMcKh2o4tUzsdzaiWvLQ1kslXW933fZR9/7dLWXx5Zf+x0h05WiHQHBprnzoW6K80c8gN3jZUjIZ5To84ay+mDXHbT+rnlZZq2fI2RePNAIM0q6/vunMrJima7RZ2F7MzOBpraPHeuMTDQdrSq2OOnT7fG/27uyA8LsbMTlmn7olVCOer9Kwwzl3UmtOoRXq79pfeztl7fQmX5xMyQ1wK1MVsOvclc32X2Kpu30wz5Zefj+/4ay3Q4oGCyVTYJvAi5ScjtIy81hobankbO+AwMNIaGgknmrZeOqIemy2JjBBmOU+IM0Zsga5qwNYwjpWMgiaEplU/9lqkwTIPMXEwpDPplSgRJ9pyaSaGDCDt92GjCWa3Kqu1X9cPOzMzKkUMLjzxSP/n89mMl7NC+vu1/98X6H/zB7c9+9iYhc647R53QEkrDxob7K2x1HJrzTQ5PR1i865MuUubX9kM6Rkx2pXY/qsaboRyhXs5OwzhRR0LiyVySRz+edeM2UNlkzoOwtZz2hwGxE3eFINsK+w3l57LfaKd9OKuTWJ2athHUmoyxVFldY6P0wFkl/W/sHF92PnEtCGd3F9tYtuZ4Kbe+eOjIw79+xeZRyE4+a48++uDw4aW+p5sjI0HU2/rRj3jPFQ8sYZRzHoo/kd9y6E3B+wRORJCorBhaddIaDP1oeQB+rKdnMjOON7XKKivVqazS/tbU1MqRI6v/MNocGWmeO7f9WN/aF/5DqTtu+/jx5iuvtCb/kbtkxU1heU4t8RpsLT7jUe2FOIVXYvlXQ0pqP2pP/5X70XWV401XzjIlwjgUV7nQjBPNoBLflB581Y1nY3tjlU2dAuawf5lyI9NzakJR6khOU34b9uvCNdtw1qCyhhjXz3eVV29M57Gs59Q4Zc0chAGayyi4irzbWKlscAAIbp0bNzszM80fPLPW9yUr53vkSFF+fP3zn39w+PDaVwabIyPNkZHWlXOLh06tzc76/JEsne4JMUrkxcRZFO6SrXzYpP1LujcyyHO88cgqklLZhSMvtaamWleuNEdeqD/yyMof/uGDw4fXP//FUqVU8envbw4PPzzz2UiixPbG59HxP9FesFHZJIPUjapIQrsfDSqbeYk0w8FJcxW6oyaFwn6lyhrGs6m9isAxr/2pM4zM/aUtvx37tUJiE84adNSgproyDWiNKWTGOOy6tEC2MS2f2pWgbDJVlh/63KSZxnu2/vnF5ccGG/39u6CymbFUY2CgMXBive+xxsBAoMSRHl9pTU09PHWoduhQMJN5k6imVnwpFvE7Vlnr6ZqdmZnW1FT4CbXzyxsjI82RkcbAQGNgYOto38ZXB8qeS8ihrKcOCX4qWtKmeyrLIe7HPCornPinjCxQZRWRkHrG2O4CfLq9wWR72tqcKpueJRY9tSKSU/Vze/YbhMQUzvp2T/Lk3UqP9hJ7ASobXbmQpoWhsr2ObSw756Z2pzCe+Bme+GhsTU42hwfX+v6sJ5TA8jMwsNHXt/HVgUDJGieOPjh6Ivw//JxYP3x0c3CQl+3mC19efvaHQgr3aQwO8iVsHT289thXudIOr5+Ifu168+0+28ePN86e3Xqmb+7Ff07GQ/oaWzQbrxwn5ausoAqiYiU/pe4qkr0hf1akmKxTlCOqkdgtRm+bboJgc9KNurups9sr3UKVy/7UrTSyczftAq789u33FU1Q1htjiGX5DPbpmegusWtmbhWzZcrGcrP97px4C4K5c1Rgxni3IWNX741dzVDZ4Hw2fVxxd4XcZCx1yS01w7ZTr7cuX1478siDw4fXHn206zqBT67P2qN/utXf3xwebl2+zD2EE7n+ZI8HR288/xE7d3GcEFKL412X3eTuCZpz03Mn8VXbZDhFBYaxnWYGkruFR/JlrnwXVboc/np/lEjnmHhPuKIc3QyztnzerOSMxPbupOz2xk/yCHcI5rbfX6Zh89OFKO03lJ/TfkM52nqlO5t0k8A3C7vHWG1M6tZRcWJMcxOG1Fj94FfnzwB3P+06ZOzq/NjVezN3M1W2sGdFAnZmZlqXLzeHhxtnzxpmmPHpwqe/v3H2bKipxnd4detZyf1KL/enzTPivfDsrEEj5Z8Kj2X93t6JPp7k6QaBys6bVXZ32JmdbU1ONoeHG0NDjf7+sh4Wwof7bB892ujvb77ySnN4uDU5ifcdAiXcMzYIg/YyCGS7QQ+prMxOvd6anAykN1Hf04W9GePgfLZPn2709zeGhoKeDHoVr70EAICy6WmVNbMzM9OanAymnZvDw43+/kZ//16606pYHT1+POiBUEcvX25NTmLNBgAA6C57WGXNxHEwHw3zMXGoyr0aGYfRZ/CJYlA+EkU8CgAAvc++Vdn24MVs9z/dbj0AAICCgcoCAAAAZQGVBQAAAMrCUmVdNkZIRb4FPG86AAAAcICwjWWdilo186YDAAAAB4c8KltVvDIkbzoAAABwcLBVWbdK6LTitWF50wEAAICDA+5+AgAAAMoCKgsAAACUBVQWAAAAKAuoLAAAAFAWUFkAAACgLKCyAAAAQFlAZQEAAICyIBcnoLIAAABAKZCLE3NQWQAAAKAMoLIAAABAWZCLE3MXJ6CyAAAAQPEEKjs3c3cNKgsAAAAUS6kqW/wqs940JWNE/FBnVW9BVZshLqqQVQ2i0oS6EmuF5YlcVly9AAAAehkrlXUqrN1F7FxWtMoG4uRWCav5vu87FZPKZmaICyzKsIQai88wYmsLrxcAAEAv8/8Bn2TGXzXtHMUAAAAASUVORK5CYII=" alt="" />

2)。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqEAAADKCAIAAAAabA65AAAgAElEQVR4nO2dW9LzuHGGuS7sJbe4ygqyCt56FYlzQI6LSGI7PmjsScpVvsjYTmI7yczYKeSCEtgAupsNEJQo6n0K9df3QxTQOL4ESKGnX//2WwQEBAQEBITrhenlFiAgICAgICAcEaDxCAgICAgI1wyrxv/DT//v3/7j//7oj//kO9/5ThyC8+JHs4vzzRTvJ/7KVrJ0QpymGGL230mwtjBpdtEH5m/n4pq8X+MV+4NnPpLS4e0J0c351/2jRKQ4frpfdpvvf6SUZxdpDnX90wtqg+vrFfvTR8Fn5tXJJjuXv7PGEtKh+RbVwtazVITMZlKNUjtulrcobKv9bsrKUo8ppQlo+t32R64IbL6JaVr/VS6wx29SGEML5R4F1ztVncjAwcLa87iOmXz0Rnd+o0tTgo/TxEwjCvbJWSpv36StF8rn7TWkXPrkJuGmOJEGVfoJP6iFyZlauPRPwZ5f/OIXP//5z0+g8W6K0xLyck5THrwaXyQlK3GbScXwVjW+aJIYo38kko1D2Ujmo6q8wZBOYc/SD9YaDtl/lzGwBO+zvHy4fzrf4uziNMUg1P/y6WJeSnC+ae2l2L+a5ElZhHpIWU8uepd9xKRDa4OmI6fPtm+RSHlv0VLeNBGk3pJGbIP9MbpH8YtEWPuV9FvtV9KR8o3xfr30XxqfPi1CJ0GsTEdmdr5TcZ05pTBgsMj2xChovNro7C2XhJ/yGVivQ3ZQt5c3Nk7aPk8/zavZJBaqr+wrl26/ztKgblb7iTyo68k5rcFS/5y9ZM9pNP5KKEuWl3A2e96dM9enM0xkr7Kf5qsodP2RcuUQYyzxr8Jij97o9hVnrLcNrsJVy2UAGg/AVXDVygYYOVvV2e1RrvTcolDhNu/a+DwtVy2XDWg8AAAAcE2g8QAAAMA1gcYDAAAA1wQaDwAAAFwTaDwAAABwTaDxAAAAwDU5TOPTiQGf+qtEAAAA4LUcvI63HigRcDcAAAAAjOXpGp8d01icnW4/bhAAAAAAGzxd4+mxi7MrZT6d6wsAAACAfTxX42sfHuwRg8uzfGzdAwAAADt48jq+8m3KfgXreAAAAGA3T9+rV1wFY6MeAAAAGMdBGt/q3z3cneBiex4AAAAYBM7AAQAAAK4JNB4AAAC4JtB4AAAA4JpA4wEAAIBr0q/xf/8FNB4AAAA4L3s0/g/QeAAAAOC0QOMBAACAawKNBwAAAK5Jv8b/3e33/wqN1wk+OwjouCP8lhP+i0OE7pFT9IHadI+0uwPwxP7ZxaBenDIt0pfiddhyeTadlnI9rV2MpMpZA86DAgAMYJ/G//oPn6jxjvOjI0FP81XO8d1JfWZw8Kt0+akU5vp6CU9uERYp0jVeT9+er3T97KIPMfi96T+nXYwkY1JLuR0a39Q/AQCXpl/j//Yn375M4xex8Wk1RiY1ukRb5s37MfjufuX9gsdXWH/2zLpqivON8Zu3KXhUS25ztqRez/T1WUy6xudWpetd5baH8QtARKLIl72epf4i/UhZBzdpfFO5FsZqPC1m3X+i2t/WY5tdnH3Z61r3Ceq7MTadFBmSwS7eOL+OlhsyAMB16df4v3mhxsdl2vXr32k6DrmILv9b5r77hOjvX6kXTEaXd93reEfmXEckJK25a01NUl2sO1s13qidBZKUxq16s2t8a7l0w/o0nrYL23+i3N+KPrbGt/eryGm8lM5tznSdfgvreADAgx0a/+NvXqzx67zsszVZvY5JIhf8XUSXr0v+7KV1/EKrxtcpKFq+JO4WtaOueENpZJHLMzVeqrfN9Jn4xnLphjVpfN0uUeg/UehvRcWm3DfrR6LQeD2d+6fVrj40HgDwoF/j//rH33x5Oo0P2ZSXrpE03uLPvqZvHZ+2EKKq8d7FW4hujt7FIGyV02ftRS5rgkQt9uzV8/WzVW99z+Mt5UpXjlrH03aR+k+0aTzth33v8ZXreDWd9FihXPpD4wEAd3Zo/I++/vLXvz+XxtM5l+5hihrf9b5V2j7N5CE+lqTyinZ5X6xIZPliMjv46H2cbzH46EgZ6fWpFGwuC7c52wM3vXPH2Z/VT1irVK83u8a3litd2aDx5naR+k+U942o/fT5i1Y/nD3pW6GKkUpK/TLTa8T+CQD4OPo1Pvzo6y9/9SKNTxutgaxmlmlu3YN10bs4TXF+bHgu72MvV9JXxBl/9iqBffcqMnN3upK+N5cevbN7wuk5a7Gm1I3U32WrNwPsWlhkHYR4qjfM3rIU314un6djWve3tEvdf4La37J34vLcxaIJ9xxSPdTpKPZEpX8CAD6OHRr/w/99mcaDgv2/STsn71Wud6lVAMDH0K/xfwWNPw/sWTE87WfgvJC3KJcTNhUAAODV7ND4f/kfaDwAAABwWvo1/i9/8N8/++W30HgAAADgnPRr/F98/3fQeAAAAOC07NL4n34FjQcAAABOSr/G//n3f/fTr76BxgMAAADnZIfGfw8anwhwBvqRvEu7H23nu9TDu3DV+nyXcr2LnSb2aPxvR2p8dtBHdXJLfdpXnz/ymuXAEB/uCfLnjRvOElF+G72eRVOd1SpBT3o5g+uw53tfHeuHXmJ/uQ79Tbzdma8lKfG8PLk+i/rx8u8Y++rh5V59N3HGn26O5gn1mZq+mJTSfHVE03SceGHvnwPZtjO84OeyXeXt1/jvjtX4mJ+zrXg1peyfYZO7sEXs6Xmlmb/RTZkP/DW6XzXJJPaydz+HvMP+IX7oj603od07YO2kZ+juQrXTXp+iY/uD6+GFiEU+lHH1yeJzV9rMGczhmAVGV7kOvZPm+5vFzl63FM9lh8b/82++OELji+bU7+PYc9qlg05ZMrez8tnpWUbCma9sR7Ss72lS7Fmtkl9wxd886wc9fSWd5kvd5LD1xta/5k+d8wev+DWX7NRrr45n01HyVfpV3S56eZlD+KfVnTw9w6fwFLck6+YNO9NhzOIZt712Kh9J9eNcDHNZLj39uj9I6Sv10DSupfqPan/zJP3MDYGLN3rYsFfTCWums18/Vexn64etT2W8d4xTJaMUTzVerJ+8Hy4ldY/p5V5RPktWWpSz6bNfkfonW89SPSj9TbKTfiWEfH6rxrVS/3X/0etNma+UeosxnkzjR8z1zX67A/HDnbcB1fjsv5JPEeHWjz0HjfUfv2Bfxyv+6yQ/6PHRvdKtwP12odEfvORPXdm3YO+XFTvZfKV4JR1lXchOo2y7SOWNkW93V0wlj78LbzrUNmkdT+eO1RfOIDv5K+V4unddDBk2fX0fi/ezwA6ixnEt1r/QTzzRTlrnkWo8nR+EdBzxg0WnMsl+rX6q+lTGe53aWhalPyj3TPkiVaofth9mC6fHyi2QlOt+otQ/Wy4pXqlnqR7E+aG2kz6nz/fqpXEt5cv2n416E/x3KPUWYzyZxnPreKlsbHy33+4aTeNl9D2lmaxrlbHatFcv+ZuXfN5Ezmlbhz94yQ+b4g+etV+xk81XilfSsWu80i5ieQV7XLUmWGXAoPfsF6l/xVF2tsYr5eLTkfuDlC97L8v3T9XXEWsn30/UTVfHCSGbTjFyU+m08dVYP9J4l67X+8NC/ZS3cLoo1Y/UDxU/n7ydg3xVK/Ws1IN9fii+WDQ3O66lfPX+M6reYox7NP7P/uk3X3z19VHP4wusc9C4ByTaXr32NfWu4vHpQI3n/c3LftAjO9Tbx5hl7ij2Jxj7VTvZfPl4NZ0naHzd7vVmY/11Z7gHGqvxlrdG9HilXEr6yZ7OdXz7uObtlPrJlsb72os0l04xctf6t9lf109dn/x4J5Z0jNPCPGY5OFrjy3IN0nglnT6NL+zUNZ4d13y+W/3nNBr/X1/8+9k0ftybluXm/JZvUN6kvC3pkJD8x0dF4zm/4Ky/ecUPehSGeqs/eGnMKP7ga/t1O9l82Xg9HcWf+oaGkXbZnCvLDUD1OYXzTCKsnZZ63mOnEsnG03KVe/XcV5T+IOXL1kPruGbrX+knWfr562aLPdQYJZ3iQTXdh2ft1+snckvJerxLF0el/wjPKaT3gqX6YfvhtsZXpir1z5ZLipfqWdN4eX4os8iFoK6relxL9+hs/2nW+K16izGeSOPXFzfyTtO6R5cl1btXr7+LoWt81g8KO3O9Z9MvfkNYPC+oCyX5m585P+h1vWVaaK7nlHggVt3vYeXKZ+032rnZ7nw6Ur5yOmy7KOXl2z1G9zCDvZidTWo7lXzH2NlYz55UbzlUpXrY3KCuugTbT8SkBKT6V/oJTT+LdPFG3mxakpLSyd75qm77avu3CxUM4719nNKvSA/4Jnl+CJH/SiAxPtwznR9v+OpbPkz6g+Z/fVxI/Y21k74r58mLTeun3ORW51v3n1mpN3N5uefJp9H4K2Hd2AfXgra7/oMrcdf0KRzdP8/Q/1/zg7ecUfVwhvo8gncpl93O145rgX6N/9N//K8bNB6AGsWj/NlON7okSv1fPnfwEk48rvdo/H9C4wEAAIDTAo0HAAAArgk0HgAAALgm0HgAAADgmkDjAQAAgGsCjQcAAACuyel/O8f6d+8gnTlgPLF5IKyvnezsiOK4StnOVs7vn1vn3e0HAICXcnqNl/y79/H8Uxckf8z1Uc8Ls7ufc/Q52tbqL/xs/sUBAOCsPFfjW/1qR3Kcb+HfvQ/2POd6kT3Lfn9b/dMXeW1q/MJ+jW8t1zBa/Ge3+ndv8i++6ccaAACuztPX8c1+tQX/7n3YfRvMgt/fZv/0icrxjLRXH8ediWgv1yha/WfHdl9Edv/im/6YAQDg0uzQ+H/q1fhWv9oDadJ41l+Q4htAgXWqlqj9TR2q8du+Jnvp8Z89QuOl9C3+rwAA4Lrs8knTpfHtfrUHslPjjX6g68Q3njJUyV5D4431NmAdL/u3hsYDAD6YQzWe88Ha4VdbIr1yb2evxre/6S35Y3a5v0vLOn5IeQ/V+NjuP5t+xeLfXbqeTR8aDwD4bJ6v8e1+tSX8ZH4Lr9EPse5v2O7H2uiPmd4E+Pz68qN95TX5F99Hq//s2Ojfnb+eS9/qxxoAAC7L0/3HD/Sr7T7sx9NvV9538Q8NAAAX5bkaP9Cv9pDX7N+INyov/GcDAMA5ePo6HgAAAABPARoPBJgfpOnhTbYZrlouAACogMYDAAAA1wQaDwAAAFyTPRr/G2g8AAAAcFp2aPw//+aLr6DxAAAAwEmBxp+MTT/3Tb8wvAKh/2d4m6cGvfYXifpZETqv6id6vkae0C7FWVJNp0NacPYDqervsl/k+nnrqZoSWjo7xtd6GhX3ampqAjev50uy7VK+Brt7SO6vN719e9LfUc8p065x90ka/0Z+x9nTY4rT4J/G6+uty03Awh4dtWbRVT+1I6IOXtVP9p9u9IR2iQefwtRXBK3dd/TzXezL13P14Ml9VX24ZN0utFqaTjs9jvFddEc9L+edd50+/rYa7x43NbPLbv2a/JTTzlfcJbHp9/lfX8+EcbxJdcPXY0A547aNQf7dW9On9SCeQUviadbBNjbYdJyLYV5NutUXyy7q60VVinfJ33Fr/RADQhVzon4itxebr2LnkHbpo7BTGr+e5JjWpqkUYr918UY2NpKrQ73yi3aX+rmyX1L3E0eGW1GfUjod40ui1vjbvHH/qms8e4ERtryd7c61b1P6cWg9x04PI2+r8fGxU5Scjiw9pNVPueKjhU2/1f86vcZXHYi1U0p5yPpsrH/3hvTJ38FnEygTH8g8ZdvjUtJPSbE7wEWjS/VQrkuoLHWsOYLmfeck/YStTylfyc5R7dIH65OJHb/0b6o3Sj2sGuDLyJRm2RBFu2/1c9Z+vp8U6xzdt1P7+FKoNX6z7TY1fucu1/52j0L7tqU/tJ7jZ2q8cnPKLB3aNb6u0Ga/bYExZtMP/UFz93D/7vb0ixHrH+tgNr6o2M2CS+nEatlU+52jeYn10OsbVzG4nDhO1k+k+mTzlewc1S7dNPhdJOrryM2HUg+uWqxvtlfR7pv9nGlfrp/Erfos0mkdXzrvovH2dr//V96MMaY/tp7rBG1cS+M75uLDNT43OK1T9cZ+jsbv9+9uTP+VGl+Jk6YlUj08QeNzk17eT5o0XrJzWLv00uRbefmIqsumxntfrss3O+pejae50X0RtT6fpvFLvpsJHrdXL329qd0XmPZtTB8avxe2wK1+you17HCNp2OPdiP9zcy2uZvz4WuxZ79/d3v62RwUhLkprNpGM/KWvXop/eL1gq09YakesviQPXpvqp81Be7hbjLpVP2kli72PQDWzlHtoiGXq2muX8wrF3NyPbjH/WjRVzWz6716tZ/rz0SKZwrK8zVmr17Od3lGaV9G1xof1fHCliuT2FDeCTXZw6bf2u5RaN+29IfWM2O5KZ031fjKvzjrl70Y+azf8Rt58Wd9R0xIv8P/uuJsnvlI9pvu8visRVvm7jH+3dvTL7YxA3c9jac/y/HkxQhLvhN9j9JFn96a4V6UrYeNVA+Os7O1fmhqlk7Lf/TcfrKWV85XKsLAdhHhysX+Rmtz/C5vL2/XA3mfgL63pdQDrSW+89B+bmzf/D2AtT4nojFCOsr42vxlI2s8X0VVpOm3c3kV2e2RytvR7nz7tqc/pJ7reqOT4VY6b6rxYARH+3d/C//xrzJyyG/nLsxbdJ4ODmr3gT/0clvrlidzNntGMapcW+lA4z+Po/27v4H/+MDfET+Z5/xG/J04R7sczfB2HzjiXnsqVM3Z7BnFqHIZ0oHGAwAAANcEGn85RP/og26Hj07/bPm2AjvH8i52AnBKoPEAAADANYHGAwAAANcEGg8AAABcE2g8AAAAcE1epPHP978rHf71KoetAAAAwMH0a/x3X7CO3+kDUXD9KcUDAAAA78zTNX6U/13d3/l6piA5bgJLeQAAAJ/Ei9bx+/3vSn6ab/P9K4veZwv0IJzrK8UDAAAAb8wejf/tF199M1Lj7b75dD/N90852XbCtrwUDwAAALwtOzT+e6/TeP3BfHL1U8s2NB4AAMDHcG6NV/zvSm/mr3v+oXzqj716AAAAn8STNX6o/93albLuJxjv3AEAAPgkXrSOfwn47RwAAIBP4mM0Hot4AAAAH8bHaDwAAADwYUDjAQAAgGsCjQcAAACuCTQegIsyTeUfm1fuuaz41JgmAO+CsYf3XWbPunFkQeMBuBDSXMDOC5abgPLHriQoWetpAnAq+jq5PmqU/9bxo/LlgMYDcCGa5oK+hf7O5QsAZ8beby2jZlO8jSmzA9CW2ptofI+/eXBWnO1UwXTGUdH0nou8E+I0RU+OO3D5AKu9HdJTlWLhCoGcsSjZo1wf6QlOvkyELVoboTQ+qiuSeorZvKYvtfTfsUXbQ9HlUtP7nSdjFHYuZ3yRvIIvC3K2qcyT1myujHSmmYs30tsH1yobMyrliuHKbbwnlj5a/r6+xjfhqqkWnIfgTVPAOhWGbPaZXfShdGSQcFOc51zjSWegJyjTc5Fp/G3mzZPska6PuSvFTXv6cPKENWRpLn2qxBTbj90oRWul6HLBZ0di79Qjx90jpuy8O/V0JJ0OYre5HonGO/itdEvDRvWHzXTsksxeyd4o6wnW9woWjTcPrn6N//Pv/e6nksa7KU4uzmkR82j1wiPccjft5vviZh0YZHXV5G++9kcXNvPl7IyCf/q1dEu8M3U7T9KhA2Bd0vk1R+fuMfeb4q3BJtnpHpU2uywdKb62Z/P6+1184xTW4f6H+jK458xp/CLDiuhKM5dF4yV7pOstZyvtn/2dvGZqku3NizcXLqzGSylb5F8pWitFl/P5MN+ZS2HnkqDz5d9RmMruJnFTROtQjfLUxF7v8waVXHrq1ZMq0D3K5XqnFJp14DR+SH+o02G7N9vV7aOm+JaemvJHJOMofd0yfAg7NP77ssbHpSFp4z3+LmZnOhgovtpbM/mbJ2kWsPkqdkr+6aW1oIQnXWp2622EI0M9LSySz/vg1xP49Y4t2RnzfcLgM5c/dTxrj55Oj8aH5nsC1sdgrfHL+j6qolvGP3YajXv1rD3S9cGTe1BuZbNfXaK68bupysXFTZ+yk10h6uyEpcQXDNvTrrpcofE7V4e+enaT9pmWTYJiOqqnMmmKiI1DVZqalKG9fx1/TyE87iqCKV+mXNQxGLejPqo/6OkoN6bpgs1bgciJtPK3UePZRAwcqfF0BqNa5Ti9XyLvGynVtG71U5enX5rE5svZqfmnD1ykhOADV7qnSUMu7S7qGq/ZKSx22Xj9HktKpwN6FxWj6KMou55bSdQmFYuS2mClJqVhXz9WkOypr1/WKEuy7Ey6efe2B+O8sDlVNV0m5din8aMou9xoja+z8yFTqQ2N33KT3TBUualJH9r7NX6xf7HTuXgL63KlaUoR3Yg/l02NL660fHpdja8W4rUk057kH/3Duxiq/jFE49l8eTvVgUcT3LjsYI1vnSCk+JdpvEqxpqEoJknrY23akqoxj1fsqa8v9lTqh5SHPqYtJovNScE4azSls7kYeg6Mxttep+jObkkwPJJ9nsbnX7Ro7QCNj9H5e5XOLnovbqedX+Mtd5+b21Q0UpdnmkJx63wSjf+L7//3xjo+m+OK50a+bNRlb3O+xeCjq4StTeMfnSnteCv5SnZKazuX99SsH3N711k65HWtbNInN79tGq9uPdk1XrJHT+fQvXr9OUirxteRdP+GbpbSDca0/6/YI12fZVHN46yRywbmfslRtg2NX6k/skxtHfm20lNFVZe7zdmedjaCdzcB09MMe/XsFBEbh6o0NSlDW9R4eQplL06PXOkWWtuUEsp3BYyrrCFDJvauvNn/RnIXa9zD3zTGYobATo3/VlvH+8c7JvXead11bvNjkVQ9mKn3cnU/8fUPlpR8FTtr//RS5CN1PlP6FbqAmPL4FLM8z5vIaykbj+Rrk6p6S2LDx3P26Ncr5dWxvHOnvPjDvigUq0+VO8LMeC4RV8XrLyLV19dZ1PesdSX4aWufwEAxF6QJQp8O7BovRW5K/hD6qqjucqnJyrXmviZY+8ljW24dlepjKWaKaB2q8tRkuj6vCmUKrZFukVunlDXTx/vUlred9g+ZaFNi+gcb2BQsKev20CFcjDvbEDtS45WqH7j928RRv/QAZoy/nftA3Ki3zARRp5HSPFVMWPUdg32uOULj+6rI3uUGNgF4AkPaS+q9rHi3JlIkaM+X/a90mcoxGi+ubHYeubADNl/FTnAcuK+qaXpT4TPZU0WWLocmeC/QXjYOW8cDAAAA4KVA408P8wM586MyAAAAHww0HgAAALgmx2t800uAe15wUD61vBMkpWm8bNMqI8aXofpyt9fbZmr2CywdwF51L2z6zdx1mqoXAABGcLDGN2lV8bKuQpMCSTO18S1HY9bSG8utNGlYq2w0abxehIEa3yrwO+9UmpTbkpqxhzdVLwAAjOBIjS+msOcsIo1zrmWiZ7/OJjhwptbtVMxWFLRVhKSiKUkpFSJZaE9Nt6qJpjY1GmbPujYeGg8AOJLDND4tuVqnbyWmVbz1vxUL9a8Un26qbBN2jW8SSN3C+rt1eS3pFJ8WiWzeryifjuohxjY1/m2ktXq32e1Oe/kp6fLb4nSi1Mt/QTrMrbtA+q0s6+xAOcxROpRwmnhPbvWhimy+rfFs+sVRNvQImv0N+oR+8qqj6T+GHRr/A9tePfs3jdSFZzOpWgyMsicpkKTxFvW1y62Eno5RdC110pqInlpdV3p9KunX3zL2kDrZzU8Vk+wdyUhT8TfZ706bujY/wzw71q17zXpkbH5e7HICsXQql5vizLnPqH/VUpx8TE9mZPNtjS/qp/DmlWygpRhSjU/oJ0c0N3hwvMYb5dYoyfrf9ssiUdPiAknj9U91g+1Y7iRav2UxiRVmqaUsKds1nm33vtuUaGt0i4XGv/VQX0kTabp3KdjvTtu7OBMPIrq78WUN57nFK/1t566thaFu3XXqs4RZjV+ktDBG0jmaZn0ovZSvPT67RvBk46oDwgcs5Y/vJ2e4xbwur17H27FrvOXGIsXoGi/N1/X1Ro3fnL6VjJQ0pctaRai2kFUmS/WyxrDXWC62s6nxljatr5RKask02qq3+LpeA/vdaS+aWjg8jKp7cjqVs65HCm97HfYsHDvpcwJZa3xalxcav3jPuneG3O3Kxr2Ozb2hFC+1RYK5MQoDjnN/Rj8ZYScQ2KfxvxzxXn2TKhvn3PQVJV5RrPrruh6wee3UeLvy1Z8abwWkj/TqtYgcW43dGr+zF3W3qV5k6QKpxlqrdzPTndBZO83diktQ1tMjc0BT79FMYzRedf2SDK4XzbXGF96PqHfB9F9qZ/Bkze1LxZLybYqnT8Rr96/sZoDFBZTOc/rJfjuBQL/G/+UP/udnmxqf6FZi9r/K35aJfjN9PZeOr1vi6aebOqEbaVSOJtGlMZt1W5td29+k8UriSmR3mzZ1pFZrNy9W6nMgdFKee+du3f15mz1HunVfmJ24XrR7Ky7WoGl5qvhHl/JtjSfmMtXOOn0fpfHx4H4CjT+MwzTePkt2aKFxBrSoaf1fu9TpeW0qkMWq1kyly+qy9N0HSJlu3pToGl93jL4eMva+bTNez7TvFmoPTe60V03K39KX3H7zc7f61KDJnkPdusctl+R2jY9UkGz1w+bbGl9cU1QGf1ck7IGfrZ9gr/5IDl7H68KZYpqWhmwiHZexQljIjHHpxubVN33vvzeKlXymGKUV6m8ZC15HFplK+dpbx95DLI3SWjTdVOOtUjRX7x7s7rTTRvQy7dLnqazb77RLHMjPxtZHrcIebKt774PcuteFmvL32Gl8oa9FRd0JTDrZYwLyIjqbb2t8LNyrV/LMbtRLjzzO1k/wzt2RHLyOp/+1fFSkIGGcGZWU2Qm3+JbRfumCvunbqHyS0Er51vFsTJ24RQj1CrHkUqfW0UOMpkp/d/Q3exGiuXr3cJZt+kQAAAbPSURBVDb356PsOVu53gXpN2lnq0/8du5InvU8HgBwKGdzpz3KnrOV612QFsdnq08s4g8GGg8AAABcE2g8AAAAcE2g8QAAAMA12aHx/wKNBwAAAM7LHo3/35/98vfQeAAAAOCcQOMBAACAawKNBwAAAK4JNB4AAAC4JtB4AAAA4Jr0a/xfQeMBAACAEwONBwAAAK4JNB4AAAC4Jjs0/ofQeAAAAOC87NH4r3/2K2g8AAAAcFKg8QAAAMA1gcYDAAAA1wQaDwAAAFwTaDwAAABwTQ7R+GmaXlIYAAAAACSg8QAAAMA1gcYDAAAA1wQaDwAAAFyTwzQ+C36vmX6K821vIjWzi9MUw9hEQ5ym6OYsi0mw/6BybeJJ63QU/5B6I/gpTi6+omJOyqv6yUEc3X9Oy8XacRf5PAkO4zCNDz76xyAOfoDMH8TsDphrQtl3Z3eisX2b24aW49rukHqjmX6exrP1fAFe0n9eyFXbcTzVPAkO4CkaHx8iR+/ffb66dY//3he+fv1ivQ5eIr3n9gnCI9LF2YsL6MywmUkn+HWlm1JQ8r3NZGVs0PijyxUfVVqkQ1fwm/fRtFDFol+qN/oVywBm6znG6FwM81pkWta6XJ6kkBJccm+1h70+RYZkMDHJk+vTrQmbjiPNRxPR61naB6rrQes/jbT2f9aegf1Hmh8kPrAd2fEulYuN75ifpXipHbV5MuzttIDjWRqf/kvv34PPevwy6pZWDz67zec10jOfukcfXTrTphDObh2iNJ1AsnfFWK3zDWSy4PagpHX8ceVy5Jrgy2E2ZB3P1hudRGa3nZFUz66YOsmcwpYrazvS91rtka6/zXd7lvpPdvppzYvWiZSOK+ZBUrfK+q/uJ0o9sP2nlbb+r/a3Uf1HmR9qPq0dpXSkcknxHfMzG8/Xmz5PQuMPoV/jww+//nK4xktdmdXCOp1CvSxjQ7KnuCUP6vWF5bWINmn8/nLd5qzyY4yeDLnhe/XUzmId07TemnKNL27ygl6uQO4D5HWVbo9+/f1TuqkgbDYq6bDlun9k1galHpTx1URT/9f726j+Yy/Op7WjmI60GS5vknfMz3W8VG+b8yQ4gB0a/6MWjU+d+5kab5kUeHtCNgXQa86g8f1jXjBPxz5HNz9gk+u5eB6/rfGPa7KO126Pcn3avg6b18vpsOW6f3QejW/s/6M0frP+rcX5sHY8m8ZL6UPjX8Eejf/GrPGB2Xeq95z3a3zMx56z7dXrmlrs6Yn3BPkz77Ea31EuJy9TmjX+kRR9d1Kys+nNYaWeXfEYtVqjx1hNJaF84thqj3L9uncasn6bXR+yx5lsOq54zEz3eLl6TrmXe7xCPWzutRZiwNLc/9V2GdV/mm5ZLtyOLFI6pnKR+I75mY3n602fJ7FXfwiHabz07sm6jUPfHQvC9VX80gPSCyzruzNT1jXv73ps7Wkr6aSPJhf941UU5Xr6jpJPD6gE+48uV6y2y7Ln3CRYZvxQvfuj2FlmsTVi2Xr25L/FtqpUrpRaXaIme9jr7eUNajoxRkfLVc2hpZFS/xHqQbez6ReJrf1faZcB/UeaH1Su2o4sSv1byjVqft6sN36epKlB4wdzmMafgT3vHJ2Zq5brE3jhbwIt2z/AyAf+thO8J1fU+HT/eLGHPVct1+fwwhYs3v0Ge8BIBO/DFTUeAAAAANB4AAAA4KocovEAAAAAeDnQeAAAAOCaQOMBAACAawKNBwAAAK4JNB4AAAC4JtB4AAAA4JpA4wEAAIBrAo0HAAAArgk0HgAAALgm0HgAAADgmvRr/F//GBoPAAAAnJd+jf+bH3/75a//AI0HAAAAzskOjf8JNB4AAAA4L9B4AAAA4JpA4wEAAIBrAo0HAAAArgk0HgAAALgm0HgAAADgmkDjAQAAgGsCjQcAAACuyTEaP7s4TXlw8XZ8afy4jNyOpNxTCvuZpK4130zxremM4jZHNx+SMgAAmDlM45ep008xxBifKHsDM+pLKvjowyALcpw/JNnhPMHO1MGM8a3pNCGVN3V+AAB4EQfv1dfTnHssnu4Lqcf8GPy66C+mXf+Id/Oqu7d5vZ4umJyLYWY2D1rTjw+NX/ckbNLlHkVeLHSPYt4N8NmVbMop3rl70Whhl7ApHlI9S/Um1QN7/ZKm96X9HXZK+SrtFY/UeCXf1nYRl/KhoTsBAMAO+jUeAQEBAQEB4UoBGo+AgICAgHDNAI1HQEBAQEC4ZoDGIyAgICAgXDNA4xEQEBAQEK4ZoPEICAgICAjXDNB4BAQEBASEawZoPAICAgICwjUDNB4BAQEBAeGaARqPgICAgIBwzfD/MFbNWNOi7h4AAAAASUVORK5CYII=" alt="" />

我是直接把表格获取的对象转为字符串来处理

python读取word表格内容(1)的更多相关文章

  1. Python读取word文档内容

    1,利用python读取纯文字的word文档,读取段落和段落里的文字. 先读取段落,代码如下: 1 ''' 2 #利用python读取word文档,先读取段落 3 ''' 4 #导入所需库 5 fro ...

  2. Python-docx 读取word.docx内容

    第一次写博客,也不知道要写点儿什么好,所以就把我在学习Python的过程中遇到的问题记录下来,以便之后查看,本人小白,写的不好,如有错误,还请大家批评指正! 中文编码问题总是让人头疼,想要用Pytho ...

  3. python读取Excel表格文件

    python读取Excel表格文件,例如获取这个文件的数据 python读取Excel表格文件,需要如下步骤: 1.安装Excel读取数据的库-----xlrd 直接pip install xlrd安 ...

  4. Java 读取Word表格中的文本和图片

    本文通过Java程序来展示如何读取Word表格,包括读取表格中的文本和图片.下面是具体实现的步骤和方法. 1. 程序环境准备 代码编译工具:IntelliJ IDEA Jdk版本:1.8.0 测试文档 ...

  5. Python读取Excel表格

    前言:需要进行自动化办公或者自动化测试的朋友,可以了解下此文,掌握Python读取Excel表格的方法. 一.准备工作: 1.安装Python3.7.0(官网下载安装包) 2.安装Pycharm(官网 ...

  6. 使用python读取word

    使用python读取word 官网:https://python-docx.readthedocs.io/en/latest/ 示例:https://blog.csdn.net/u010911997/ ...

  7. Python 读取word中表格数据、读取word修改并保存、替换word中词汇、读取word中每段内容,读取一段话中相同样式内容,理解Document中run

    from docx import Document path = r'D:\pywork\12' # word信息表所在文件夹 w = Document(path + '/' + 'word信息表.d ...

  8. 2018-10-04 [日常]用Python读取word文档中的表格并比较

    最近想对某些word文档(docx)的表格内容作比较, 于是找了一下相关工具. 参考Automate the Boring Stuff with Python中的word部分, 试用了python-d ...

  9. 用python读取word文件里的表格信息【华为云技术分享】

    在企查查查询企业信息的时候,得到了一些word文件,里面有些控股企业的数据放在表格里,需要我们将其提取出来. word文件看起来很复杂,不方便进行结构化.实际上,一个word文档中大概有这么几种类型的 ...

随机推荐

  1. asp.net RadioButton控件基础

    RadioButton按钮呢,必须要设置groupname属性的值才能将多个RadioButton按钮设置为单选按钮,当AutoPostBack="true"的时候,在change ...

  2. java与javac命令笔记

    Java对待.java文件与.class文件是有区别的.对.java文件可以直接指定路径给它,而java命令所需的.class文件不能出现扩展名,也不能指定额外的路径给它,对于Java所需的.clas ...

  3. javascript prompt示例

    <html lang="en"> <head>   <title>Date example</title> <script t ...

  4. javascript中的for……in循环

    <script type="text/javascript">    var theBeatles=new Array("John","P ...

  5. 解决PowerDesigner中DBMS设置的问题(Repost)

    创建物理模型时DBMS下拉框是空的,没值,以前从来没遇到过这种现象,开始以为PowerDesigner安装软件的问题,不过装了又卸,卸了又装,结果还是那样,现在找到答案了:点击DBMS后面的黄色文件图 ...

  6. ASP.NET MVC3使用Unity2.0实现依赖注入(转载和扩展)

    http://note.youdao.com/share/?id=53252d0f897e0e109aadd296a1682354&type=note

  7. private、 protected、 public、 internal 修饰符的访问权限

    private : 私有成员, 在类的内部才可以访问. protected : 保护成员,该类内部和继承类中可以访问. public : 公共成员,完全公开,没有访问限制. internal: 当前程 ...

  8. 刷爆github小绿点

    转载请注明出处:https://ahangchen.gitbooks.io/windy-afternoon/content/kit/git/green_blush.html 工程地址,欢迎star!! ...

  9. SQL Server一些重要视图 1

    第一个: sys.indexs 每个堆与索引在它上有一行. 第二个: sys.partitions每个堆与索引的每一个分区返回一行.每一张表最多可以有1000个区. 第三个: sys. allocat ...

  10. GDAL python教程(1)——用OGR读写矢量数据

    本教程的讲义和源码都是取自Utah State University的openGIS课程 相关资料,包括讲义.源码.数据样例,请从此处下载http://www.gis.usu.edu/~chrisg/ ...