简介及适用场景

如果想在数据仓库中快速查询结果,可以使用greenplum。

Greenplum数据库也简称GPDB。它拥有丰富的特性:

第一,完善的标准支持:GPDB完全支持ANSI SQL 2008标准和SQL OLAP 2003 扩展;从应用编程接口上讲,它支持ODBC和JDBC。完善的标准支持使得系统开发、维护和管理都大为方便。而现在的 NoSQL,NewSQL和Hadoop 对 SQL 的支持都不完善,不同的系统需要单独开发和管理,且移植性不好。

第二,支持分布式事务,支持ACID。保证数据的强一致性。

第三,做为分布式数据库,拥有良好的线性扩展能力。在国内外用户生产环境中,具有上百个物理节点的GPDB集群都有很多案例。

第四,GPDB是企业级数据库产品,全球有上千个集群在不同客户的生产环境运行。这些集群为全球很多大的金融、政府、物流、零售等公司的关键业务提供服务。

第五,GPDB是Greenplum(现在的Pivotal)公司十多年研发投入的结果。GPDB基于PostgreSQL 8.2,PostgreSQL 8.2有大约80万行源代码,而GPDB现在有130万行源码。相比PostgreSQL 8.2,增加了约50万行的源代码。

第六,Greenplum有很多合作伙伴,GPDB有完善的生态系统,可以与很多企业级产品集成,譬如SAS,Cognos,Informatic,Tableau等;也可以很多种开源软件集成,譬如Pentaho,Talend 等。

greenplum起源

Greenplum最早是在10多年前(大约在2002年)出现的,基本上和Hadoop是同一时期(Hadoop 约是2004年前后,早期的Nutch可追溯到2002年)。当时的背景是:

  • 互联网行业经过之前近10年的由慢到快的发展,累积了大量信息和数据,数据在爆发式增长,这些海量数据急需新的计算方式,需要一场计算方式的革命;
  • 传统的主机计算模式在海量数据面前,除了造价昂贵外,在技术上也难于满足数据计算性能指标,传统主机的Scale-up模式遇到了瓶颈,SMP(对称多处理)架构难于扩展,并且在CPU计算和IO吞吐上不能满足海量数据的计算需求;
  • 分布式存储和分布式计算理论刚刚被提出来,Google的两篇著名论文发表后引起业界的关注,一篇是关于GFS分布式文件系统,另外一篇是关于MapReduce 并行计算框架的理论,分布式计算模式在互联网行业特别是收索引擎和分词检索等方面获得了巨大成功。

下图就是GFS的架构

总体架构

greenplum的总体架构如下:

数据库由Master Severs和Segment Severs通过Interconnect互联组成。

Master主机负责:建立与客户端的连接和管理;SQL的解析并形成执行计划;执行计划向Segment的分发收集Segment的执行结果;Master不存储业务数据,只存储数据字典。

Segment主机负责:业务数据的存储和存取;用户查询SQL的执行。

greenplum使用mpp架构。

基本体系架构

master节点,可以做成高可用的架构

master node高可用,类似于hadoop的namenode和second namenode,实现主备的高可用。

segments节点

并行管理

对于数据的装载和性能监控。

并行备份和恢复。

数据访问流程,数据分布到不同颜色的节点上

查询流程分为查询创建和查询分发,计算后将结果返回。

对于存储,将存储的内容分布到各个结点上。

对于数据的分布,分为hash分布和随机分布两种。

均匀分布的情况:

总结

GPDB从开始设计的时候就被定义成数据仓库,如果是olap的应用,可以尝试使用GPDB。

海量数据处理利器greenplum——初识的更多相关文章

  1. 海量数据处理利器greenplum——初识

    简介及适用场景 如果想在数据仓库中快速查询结果,可以使用greenplum. Greenplum数据库也简称GPDB.它拥有丰富的特性: 第一,完善的标准支持:GPDB完全支持ANSI SQL 200 ...

  2. 数据量越发庞大怎么办?新一代数据处理利器Greenplum来助攻

    作者:李树桓 个推数据研发工程师 前言:近年来,互联网的快速发展积累了海量大数据,而在这些大数据的处理上,不同技术栈所具备的性能也有所不同,如何快速有效地处理这些庞大的数据仓,成为很多运营者为之苦恼的 ...

  3. DBA_Oracle海量数据处理分析(方法论)

    2014-12-18 Created By BaoXinjian

  4. 从hadoop框架与MapReduce模式中谈海量数据处理

    http://blog.csdn.net/wind19/article/details/7716326 前言 几周前,当我最初听到,以致后来初次接触Hadoop与MapReduce这两个东西,我便稍显 ...

  5. BloomFilter–大规模数据处理利器(转)

    BloomFilter–大规模数据处理利器 Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法.通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求1 ...

  6. c语言海量数据处理

    教你如何迅速秒杀掉:99%的海量数据处理面试题 http://wenku.baidu.com/view/4546d06ca45177232f60a276.html c语言如何对海量数据进行处理 PDF ...

  7. 从Hadoop框架与MapReduce模式中谈海量数据处理(含淘宝技术架构) (转)

    转自:http://blog.csdn.net/v_july_v/article/details/6704077 从hadoop框架与MapReduce模式中谈海量数据处理 前言 几周前,当我最初听到 ...

  8. 腾讯海量数据处理平台TDW

    TDW是腾讯海量数据处理平台中最核心的模块,它有以下几个作用: 提供海量的离线计算和存储服务.TDW是腾讯内部规模最大的离线数据处理平台,公司内大多数业务的产品报表.运营分析.数据挖掘等的存储和计算都 ...

  9. 海量数据处理算法—Bloom Filter

    海量数据处理算法—Bloom Filter 1. Bloom-Filter算法简介 Bloom-Filter,即布隆过滤器,1970年由Bloom中提出.它可以用于检索一个元素是否在一个集合中. Bl ...

随机推荐

  1. Core Data (二)备

    序 上次只是说了三个Core Data栈基本类.这次准备介绍一下常用的类. NSManagedObject Core Data是一次底层数据封装成面向对象的技术.最直接的表现就是在SQLite里面的一 ...

  2. Codeforces Round #277 (Div. 2) 解题报告

    题目地址:http://codeforces.com/contest/486 A题.Calculating Function 奇偶性判断,简单推导公式. #include<cstdio> ...

  3. linux里忘记root密码解决办法

    1:打开虚拟机,点‘启动’按钮, 2:出现上面这个界面时,键盘输入’i’,出现grub界面: 3:键盘输入e,出现如下界面: 4:选择第二行(kernel……) 5:键盘输入e,出现如下界面: 6:在 ...

  4. 动态修改ActionBar Menu的显示

    应用场景: 在主Activity中,采用InstrumentedActivity侧边栏的方式,侧边栏的每一项对应一个Fragment,要实现不同的Fragment动态显示与隐藏ActionBar Me ...

  5. Qt下HBoxLayout里的按钮有重叠

    没想到是一个bug,而且六年了都没有解决: https://bugreports.qt.io/browse/QTBUG-14591 http://stackoverflow.com/questions ...

  6. Java获取当前日期的前一个月,前一天的时间

    Calendar calendar = Calendar.getInstance(); calendar.add(Calendar.DATE, -); //得到前一天 calendar.add(Cal ...

  7. 导入旧数据需要 使用date插件

    "@version" => "1", "@timestamp" => "2016-09-12T08:31:06.630 ...

  8. Unity PlayerPrefs类进行扩展(整个对象进行保存)

    盘子脸在制作单机游戏的时候,先以为没有好多数据需要保存本地. 就没有使用json等格式自己进行保存. 使用PlayerPrefs类,但是后面字段越来越多的时候. PlayerPrefs保存就发现要手动 ...

  9. iOS获取一个方法的执行时间

    #import <Foundation/Foundation.h> #import <mach/mach_time.h> typedef void (^block)(void) ...

  10. 开源 免费 java CMS - FreeCMS2.0 会员我的评论

    项目地址:http://www.freeteam.cn/ 我的评论 从左側管理菜单点击我的评论进入. 在这里能够查看当前登录会员的全部评论记录. 删除评论 选择评论然后点击删除button能够完毕删除 ...