这个系列主要是记一下目前效率较高或者比较出名的一些算法.

Karatsuba multiplication:

x=5678   then: a=56  b=67

y=1234           c=12 d=34

setps:

1:   a*c = 672    ①

2:   b*d=2652   ②

3:  (a+b)(c+d)=6164  ③

4:  ③-②-①=2840

5:  6720000 + 2652+284000 = 7006652

Recursive algorithm:

whrite: x= 10n/2 a+b   y= 10 n/2 c+d

then x*y = 10nac+10n/2(ad+bc)+bd   这里,我们需要做4次乘法,在计算机中的cost并不理想,所以用到一个

Gauss's trick:

step1: recursively compute ac

step2: recurisively compute bd

step3: recurisively compute (a+c)*(c+d)  then

ad+bc = (a+c)*(c+d) - ac - bd

upshot:only 3 recursive multiply calls.

note: 这里的n表示位数, 比如x是6位数,n=6, n/2=3,如果x=7,则n/2取4.

保留一个问题,这个是我比较困惑的, 如果x和y位数相差比较大这个算法还能不能用, 比如x是7位数,y是三位数,希望大神解答!

在计算机里,少做一次乘法的效率会提高不少,对于给定的n位大数,算法的复杂度不超过3nlog3 ≈ 3n1.585, 一般给定N位数,复杂度是n平方。

Algorithm(1) - Karatsuba multiplication的更多相关文章

  1. [MIT6.006] 11. Integer Arithmetic, Karatsuba Multiplication 整型算术,Karatsuba乘法

    很多人不喜欢√2的表达,他们认为它不是一个数. 一.卡塔兰数 Catalan numbers 在数方面上,有个著名的数叫卡塔兰数 Catalan numbers,它是组合数学中一个常在各种计数问题中出 ...

  2. Google Interview University - 坚持完成这套学习手册,你就可以去 Google 面试了

    作者:Glowin链接:https://zhuanlan.zhihu.com/p/22881223来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 原文地址:Google ...

  3. Converting from Decimal Notation to Binary Notation for Fractions

    COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION Therefore, the conver ...

  4. 基于 CPython 解释器,为你深度解析为什么Python中整型不会溢出

    前言 本次分析基于 CPython 解释器,python3.x版本 在python2时代,整型有 int 类型和 long 长整型,长整型不存在溢出问题,即可以存放任意大小的整数.在python3后, ...

  5. 《python解释器源码剖析》第2章--python中的int对象

    2.0 序 在所有的python内建对象中,整数对象是最简单的对象.从对python对象机制的剖析来看,整数对象是一个非常好的切入点.那么下面就开始剖析整数对象的实现机制 2.1 初识PyLongOb ...

  6. Booth Multiplication Algorithm [ASM-MIPS]

    A typical implementation Booth's algorithm can be implemented by repeatedly adding (with ordinary un ...

  7. CSharp Algorithm - Replace multiplication operator with a method

    /* Author: Jiangong SUN */ How to replace multiplication operation with a method? For example, you h ...

  8. algorithm@ Divide two integers without using multiplication, division and mod operator. (Bit Operation)

    #include<bits/stdc++.h> using namespace std; int divide(int dividend, int divisor) { long long ...

  9. Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT

    Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...

随机推荐

  1. Unity利用SMSSDK实现短信验证码(附代码)

    最近一直在研究如何给app更多实用性的功能,在app进行登录或者注册时,为了方便用户更加快捷的完成登录功能,所以就决定采用短信验证码的方式进行验证登录.在学习的过程中,先使用了Mob的短信服务进行短信 ...

  2. yocto-sumo源码解析(四):bitbake

    1. 环境准备 按照前面几节的分享,我们已经知道了oe-init-build-env是如何建立yocto项目环境的,下面我们继续研究bitbake脚本,在这之前,因为我们选择qemuarm64为目标机 ...

  3. 四则运算APP,团队项目之需求

    队名:IG.Super 成员:范铭祥,曾威,刘恒,黄伟俊. 一.程序功能需求 程序可以出带括号的正整数四则运算,支持分数,除法保留两位小数,如:(1/3+1)*2 = 2.67,特别注意:这里是2.6 ...

  4. Window环境下RabbitMQ 添加用户、设置角色和权限

    基本上新增用户.角色和权限的方法都一样,大概如下: REM 添加一个帐号 密码 rabbitmqctl.bat add_user zhangfujun zhangfujun123 REM 添加角色 r ...

  5. [转帖] Oracle数据库 通过触发器 限制登录ip

    转帖 From https://yq.aliyun.com/ziliao/123360 create or replace trigger logon_ip_control after logon o ...

  6. 统计nginx日志的状态码

    日志格式 61.159.140.123 - - [23/Aug/2014:00:01:42 +0800] "GET /favicon.ico HTTP/1.1" 404 \ &qu ...

  7. Hbase远程连接:Can't get the locations

    当Java API远程连接出错:Can't get the locations 原先填入的是IP地址,后来改为HOSTS文件中配置的主机名问题解决,如下红色字体部分: conf.set("h ...

  8. 【UOJ#67】新年的毒瘤(Tarjan)

    [UOJ#67]新年的毒瘤(Tarjan) 题面 UOJ 题解 一棵\(n\)个节点的树显然有\(n-1\)条边,在本题中意味着删去一个点之后还剩下\(n-2\)条边.那么找到所有度数为\(m-(n- ...

  9. NOIP2018 No regrets youth

    NOIP2018在即,20181009总结一些易错的知识点和解题方法 ——by ljc20020730 HGOI NOIP2018 No regrets youth ! NOIP2018 No reg ...

  10. 【bzoj2669】 cqoi2012—局部极小值

    http://www.lydsy.com/JudgeOnline/problem.php?id=2669 (题目链接) 题意 给出一个$n*m$的整数矩阵,其中$[1,nm]$中的整数每个出现一次,有 ...