视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层。

1、Convolution层:

就是卷积层,是卷积神经网络(CNN)的核心层。

层类型:Convolution

  lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。

在后面的convolution_param中,我们可以设定卷积层的特有参数。

必须设置的参数:

  num_output: 卷积核(filter)的个数

  kernel_size: 卷积核的大小。如果卷积核的长和宽不等,需要用kernel_h和kernel_w分别设定

其它参数:

   stride: 卷积核的步长,默认为1。也可以用stride_h和stride_w来设置。

   pad: 扩充边缘,默认为0,不扩充。 扩充的时候是左右、上下对称的,比如卷积核的大小为5*5,那么pad设置为2,则四个边缘都扩充2个像素,即宽度和高度都扩充了4个像素,这样卷积运算之后的特征图就不会变小。也可以通过pad_h和pad_w来分别设定。

      weight_filler: 权值初始化。 默认为“constant",值全为0,很多时候我们用"xavier"算法来进行初始化,也可以设置为”gaussian"
      bias_filler: 偏置项的初始化。一般设置为"constant",值全为0。
      bias_term: 是否开启偏置项,默认为true, 开启
      group: 分组,默认为1组。如果大于1,我们限制卷积的连接操作在一个子集内。如果我们根据图像的通道来分组,那么第i个输出分组只能与第i个输入分组进行连接。
 
输入:n*c0*w0*h0
输出:n*c1*w1*h1
其中,c1就是参数中的num_output,生成的特征图个数
 w1=(w0+2*pad-kernel_size)/stride+1;
 h1=(h0+2*pad-kernel_size)/stride+1;
如果设置stride为1,前后两次卷积部分存在重叠。如果设置pad=(kernel_size-1)/2,则运算后,宽度和高度不变。
示例:
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
 
  2、Pooling层
也叫池化层,为了减少运算量和数据维度而设置的一种层。
层类型:Pooling
必须设置的参数:
     kernel_size: 池化的核大小。也可以用kernel_h和kernel_w分别设定。
其它参数:
   pool: 池化方法,默认为MAX。目前可用的方法有MAX, AVE, 或STOCHASTIC
  pad: 和卷积层的pad的一样,进行边缘扩充。默认为0
  stride: 池化的步长,默认为1。一般我们设置为2,即不重叠。也可以用stride_h和stride_w来设置。
 示例:
 
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
 

pooling层的运算方法基本是和卷积层是一样的。

输入:n*c*w0*h0
输出:n*c*w1*h1
和卷积层的区别就是其中的c保持不变
 w1=(w0+2*pad-kernel_size)/stride+1;
 h1=(h0+2*pad-kernel_size)/stride+1;
如果设置stride为2,前后两次卷积部分不重叠。100*100的特征图池化后,变成50*50.
 
3、Local Response Normalization (LRN)层
此层是对一个输入的局部区域进行归一化,达到“侧抑制”的效果。可去搜索AlexNet或GoogLenet,里面就用到了这个功能
 层类型:LRN
参数:全部为可选,没有必须
  local_size: 默认为5。如果是跨通道LRN,则表示求和的通道数;如果是在通道内LRN,则表示求和的正方形区域长度。
  alpha: 默认为1,归一化公式中的参数。
  beta: 默认为5,归一化公式中的参数。
  norm_region: 默认为ACROSS_CHANNELS。有两个选择,ACROSS_CHANNELS表示在相邻的通道间求和归一化。WITHIN_CHANNEL表示在一个通道内部特定的区域内进行求和归一化。与前面的local_size参数对应。
 
归一化公式:对于每一个输入, 去除以,得到归一化后的输出
 
示例:
 
layers {
name: "norm1"
type: LRN
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
 

4、im2col层

如果对matlab比较熟悉的话,就应该知道im2col是什么意思。它先将一个大矩阵,重叠地划分为多个子矩阵,对每个子矩阵序列化成向量,最后得到另外一个矩阵。

看一看图就知道了:

在caffe中,卷积运算就是先对数据进行im2col操作,再进行内积运算(inner product)。这样做,比原始的卷积操作速度更快。

看看两种卷积操作的异同:

视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层。

1、Convolution层:

就是卷积层,是卷积神经网络(CNN)的核心层。

层类型:Convolution

  lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。

在后面的convolution_param中,我们可以设定卷积层的特有参数。

必须设置的参数:

  num_output: 卷积核(filter)的个数

  kernel_size: 卷积核的大小。如果卷积核的长和宽不等,需要用kernel_h和kernel_w分别设定

其它参数:

   stride: 卷积核的步长,默认为1。也可以用stride_h和stride_w来设置。

   pad: 扩充边缘,默认为0,不扩充。 扩充的时候是左右、上下对称的,比如卷积核的大小为5*5,那么pad设置为2,则四个边缘都扩充2个像素,即宽度和高度都扩充了4个像素,这样卷积运算之后的特征图就不会变小。也可以通过pad_h和pad_w来分别设定。

      weight_filler: 权值初始化。 默认为“constant",值全为0,很多时候我们用"xavier"算法来进行初始化,也可以设置为”gaussian"
      bias_filler: 偏置项的初始化。一般设置为"constant",值全为0。
      bias_term: 是否开启偏置项,默认为true, 开启
      group: 分组,默认为1组。如果大于1,我们限制卷积的连接操作在一个子集内。如果我们根据图像的通道来分组,那么第i个输出分组只能与第i个输入分组进行连接。
 
输入:n*c0*w0*h0
输出:n*c1*w1*h1
其中,c1就是参数中的num_output,生成的特征图个数
 w1=(w0+2*pad-kernel_size)/stride+1;
 h1=(h0+2*pad-kernel_size)/stride+1;
如果设置stride为1,前后两次卷积部分存在重叠。如果设置pad=(kernel_size-1)/2,则运算后,宽度和高度不变。
示例:
 
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
 
  2、Pooling层
也叫池化层,为了减少运算量和数据维度而设置的一种层。
层类型:Pooling
必须设置的参数:
     kernel_size: 池化的核大小。也可以用kernel_h和kernel_w分别设定。
其它参数:
   pool: 池化方法,默认为MAX。目前可用的方法有MAX, AVE, 或STOCHASTIC
  pad: 和卷积层的pad的一样,进行边缘扩充。默认为0
  stride: 池化的步长,默认为1。一般我们设置为2,即不重叠。也可以用stride_h和stride_w来设置。
 示例:
 
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
 

pooling层的运算方法基本是和卷积层是一样的。

输入:n*c*w0*h0
输出:n*c*w1*h1
和卷积层的区别就是其中的c保持不变
 w1=(w0+2*pad-kernel_size)/stride+1;
 h1=(h0+2*pad-kernel_size)/stride+1;
如果设置stride为2,前后两次卷积部分不重叠。100*100的特征图池化后,变成50*50.
 
3、Local Response Normalization (LRN)层
此层是对一个输入的局部区域进行归一化,达到“侧抑制”的效果。可去搜索AlexNet或GoogLenet,里面就用到了这个功能
 层类型:LRN
参数:全部为可选,没有必须
  local_size: 默认为5。如果是跨通道LRN,则表示求和的通道数;如果是在通道内LRN,则表示求和的正方形区域长度。
  alpha: 默认为1,归一化公式中的参数。
  beta: 默认为5,归一化公式中的参数。
  norm_region: 默认为ACROSS_CHANNELS。有两个选择,ACROSS_CHANNELS表示在相邻的通道间求和归一化。WITHIN_CHANNEL表示在一个通道内部特定的区域内进行求和归一化。与前面的local_size参数对应。
 
归一化公式:对于每一个输入, 去除以,得到归一化后的输出
 
示例:
 
layers {
name: "norm1"
type: LRN
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
 

4、im2col层

如果对matlab比较熟悉的话,就应该知道im2col是什么意思。它先将一个大矩阵,重叠地划分为多个子矩阵,对每个子矩阵序列化成向量,最后得到另外一个矩阵。

看一看图就知道了:

在caffe中,卷积运算就是先对数据进行im2col操作,再进行内积运算(inner product)。这样做,比原始的卷积操作速度更快。

看看两种卷积操作的异同:

原文:http://www.cnblogs.com/denny402/p/5071126.html

 

[转] caffe视觉层Vision Layers 及参数的更多相关文章

  1. Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  2. 转 Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  3. 【转】Caffe初试(五)视觉层及参数

    本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. ...

  4. caffe(3) 视觉层及参数

    本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN)局部相应归一化, im2 ...

  5. caffe学习系列(4):视觉层介绍

    视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. 这里介绍下conv层. layer { name: & ...

  6. 1、Caffe数据层及参数

    要运行Caffe,需要先创建一个模型(model),每个模型由许多个层(layer)组成,每个层又都有自己的参数, 而网络模型和参数配置的文件分别是:caffe.prototxt,caffe.solv ...

  7. caffe 每层结构

    如何在Caffe中配置每一个层的结构 最近刚在电脑上装好Caffe,由于神经网络中有不同的层结构,不同类型的层又有不同的参数,所有就根据Caffe官网的说明文档做了一个简单的总结. 1. Vision ...

  8. Caffe 激励层(Activation)分析

    Caffe_Activation 一般来说,激励层的输入输出尺寸一致,为非线性函数,完成非线性映射,从而能够拟合更为复杂的函数表达式激励层都派生于NeuronLayer: class XXXlayer ...

  9. Caffe学习系列(4):激活层(Activiation Layers)及参数

    在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的.从bottom得到一个blob数据输入,运算后,从top输入一个blob数据.在运算过程中,没有改变数据的大小,即输入 ...

随机推荐

  1. Java之流的分类

    Java I/O流分类:

  2. 新版 Chrome Ajax 跨域调试

    一.前言 web 开发中 Ajax 是十分常见的技术,但是在前后端使用接口对接的调试过程中不可避免会碰到跨域问题.今天我给大家介绍一个十分简单有效的方法. 跨域经典错误 二.Chrome 跨域设置 首 ...

  3. 【bzoj3881】[Coci2015]Divljak AC自动机+树链的并+DFS序+树状数组

    题目描述 Alice有n个字符串S_1,S_2...S_n,Bob有一个字符串集合T,一开始集合是空的. 接下来会发生q个操作,操作有两种形式: “1 P”,Bob往自己的集合里添加了一个字符串P. ...

  4. PL/SQL如何设置当前格局确保每次打开都给关闭前一样

    打开plsql  --> windows-->save layout 即可

  5. (转)远程连接webservice遇到无法访问的问题解决办法

    原帖:http://stu-xu.i.sohu.com/blog/view/170429191.htm 如果在本地测试webservice可以运行,在远程却显示“测试窗体只能用于来自本地计算机的请求” ...

  6. POJ2125 Destroying The Graph

    题目链接:ヾ(≧∇≦*)ゝ 大致题意: 给出一个有向图D=(V,E).对于每个点U,定义两种操作a(u),b(u) 操作a(u):删除点U的所有出边,即属于E,操作花费为Ca(u). 操作b(u):删 ...

  7. 基于Spark Mllib的文本分类

    基于Spark Mllib的文本分类 文本分类是一个典型的机器学习问题,其主要目标是通过对已有语料库文本数据训练得到分类模型,进而对新文本进行类别标签的预测.这在很多领域都有现实的应用场景,如新闻网站 ...

  8. 【COGS1752】 BOI2007—摩基亚Mokia

    http://cogs.pro/cogs/problem/problem.php?pid=1752 (题目链接) 题意 给出$n*n$的棋盘,单点修改,矩阵查询. Solution 离线以后CDQ分治 ...

  9. ElasticStack系列之十九 & bulk时 index 和 create 的区别

    区别: 两篇文章 id 都一样的情况下,index 是将第二篇文章覆盖第一篇:create 是在第二篇插入的时候抛出一个已经存在的异常 解释: 在批量请求的时候最好使用 create 方式进行导入.假 ...

  10. node的path.join 和 path.resolve的区别

    直接上图: join resolve 明显可以看出,join只会帮你把路径连接起来,而resolve会以当前路径为父路径来把你提供的路径连接起来