前言

前面我们了解了celery的基本使用后,现在对其常用的对象和方法进行分析。

Celery对象

核心的对象就是Celery了,初始化方法:

class Celery(object):
def __init__(self, main=None, loader=None, backend=None,
amqp=None, events=None, log=None, control=None,
set_as_current=True, accept_magic_kwargs=False,
tasks=None, broker=None, include=None, changes=None,
config_source=None, fixups=None, task_cls=None,
autofinalize=True, **kwargs): # 常用的需要配置的参数
main:如果作为__main__运行,则为主模块的名称。用作自动生成的任务名称的前缀
loader:当前加载器实例。
backend:任务结果url;
amqp:AMQP对象或类名,一般不管;
log:日志对象或类名;
set_as_current:将本实例设为全局当前应用
tasks:任务注册表。
broker:使用的默认代理的URL,任务队列;
include:每个worker应该导入的模块列表,以实例创建的模块的目录作为起始路径;

这些参数都是celery实例化的配置,我们也可以不写,然后使用config_from_object方法加载配置;

创建异步任务的方法task

任何被task修饰的方法都会被创建一个Task对象,变成一个可序列化并发送到远程服务器的任务;它有多种修饰方式:

  • 使用默认的参数
@celery.task
def function_name():
pass
  • 指定相关参数
@celery.task(bind=True, name='name')
def function_name():
pass # task方法参数
name:可以显式指定任务的名字;默认是模块的命名空间中本函数的名字。
serializer:指定本任务的序列化的方法;
bind:一个bool值,设置是否绑定一个task的实例,如果绑定,task实例会作为参数传递到任务方法中,可以访问task实例的所有的属性,即前面反序列化中那些属性
base:定义任务的基类,可以以此来定义回调函数,默认是Task类,我们也可以定义自己的Task类
default_retry_delay:设置该任务重试的延迟时间,当任务执行失败后,会自动重试,单位是秒,默认3分钟;
autoretry_for:设置在特定异常时重试任务,默认False即不重试;
retry_backoff:默认False,设置重试时的延迟时间间隔策略;
retry_backoff_max:设置最大延迟重试时间,默认10分钟,如果失败则不再重试;
retry_jitter:默认True,即引入抖动,避免重试任务集中执行;
# 当bind=True时,add函数第一个参数是self,指的是task实例
@task(bind=True) # 第一个参数是self,使用self.request访问相关的属性
def add(self, x, y):
try:
logger.info(self.request.id)
except:
self.retry() # 当任务失败则进行重试
  • 自定义Task基类
import celery

class MyTask(celery.Task):
# 任务失败时执行
def on_failure(self, exc, task_id, args, kwargs, einfo):
print('{0!r} failed: {1!r}'.format(task_id, exc))
# 任务成功时执行
def on_success(self, retval, task_id, args, kwargs):
pass
# 任务重试时执行
def on_retry(self, exc, task_id, args, kwargs, einfo):
pass @task(base=MyTask)
def add(x, y):
raise KeyError() #方法相关的参数
exc:失败时的错误的类型;
task_id:任务的id;
args:任务函数的参数;
kwargs:键值对参数;
einfo:失败或重试时的异常详细信息;
retval:任务成功执行的返回值;

Task的一般属性

Task.name:任务名称;
Task.request:当前任务的信息;
Task.max_retries:设置重试的最大次数
Task.throws:预期错误类的可选元组,不应被视为实际错误,而是结果失败;
Task.rate_limit:设置此任务类型的速率限制
Task.time_limit:此任务的硬限时(以秒为单位)。
Task.ignore_result:不存储任务状态。默认False;
Task.store_errors_even_if_ignored:如果True,即使任务配置为忽略结果,也会存储错误。
Task.serializer:标识要使用的默认序列化方法的字符串。
Task.compression:标识要使用的默认压缩方案的字符串。默认为task_compression设置。
Task.backend:指定该任务的结果存储后端用于此任务。
Task.acks_late:如果设置True为此任务的消息将在任务执行后确认 ,而不是在执行任务之前(默认行为),即默认任务执行之前就会发送确认;
Task.track_started:如果True任务在工作人员执行任务时将其状态报告为“已启动”。默认是False;

调用异步任务

调用异步任务有三个方法,如下:

task.delay():这是apply_async方法的别名,但接受的参数较为简单;
task.apply_async(args=[arg1, arg2], kwargs={key:value, key:value}):可以接受复杂的参数
send_task():可以发送未被注册的异步任务,即没有被celery.task装饰的任务;

1. app.send_task

# tasks.py
from celery import Celery
app = Celery()
def add(x,y):
return x+y app.send_task('tasks.add',args=[3,4]) # 参数基本和apply_async函数一样
# 但是send_task在发送的时候是不会检查tasks.add函数是否存在的,即使为空也会发送成功,所以celery执行是可能找不到该函数报错;

2. Task.delay

delay方法是apply_async方法的简化版,不支持执行选项,只能传递任务的参数。

@app.task
def add(x, y, z=0):
return x + y add.delay(30,40,z=5) # 包括位置参数和关键字参数

3. Task.apply_async

apply_async支持执行选项,它会覆盖全局的默认参数和定义该任务时指定的执行选项,本质上还是调用了send_task方法;

add.apply_async(args=[30,40], kwargs={'z':5})

# 其他参数
task_id:为任务分配唯一id,默认是uuid;
countdown : 设置该任务等待一段时间再执行,单位为s;
eta : 定义任务的开始时间;eta=time.time()+10;
expires : 设置任务时间,任务在过期时间后还没有执行则被丢弃;
retry : 如果任务失败后, 是否重试;使用true或false,默认为true
shadow:重新指定任务的名字str,覆盖其在日志中使用的任务名称;
retry_policy : {},重试策略.如下:
max_retries : 最大重试次数, 默认为 3 次.
interval_start : 重试等待的时间间隔秒数, 默认为 0 , 表示直接重试不等待.
interval_step : 每次重试让重试间隔增加的秒数, 可以是数字或浮点数, 默认为 0.2
interval_max : 重试间隔最大的秒数, 即 通过 interval_step 增大到多少秒之后, 就不在增加了, 可以是数字或者浮点数, 默认为 0.2 . routing_key:自定义路由键;
queue:指定发送到哪个队列;
exchange:指定发送到哪个交换机;
priority:任务队列的优先级,0到255之间,对于rabbitmq来说0是最高优先级;
serializer:任务序列化方法;通常不设置;
compression:压缩方案,通常有zlib, bzip2
headers:为任务添加额外的消息;
link:任务成功执行后的回调方法;是一个signature对象;可以用作关联任务;
link_error: 任务失败后的回调方法,是一个signature对象; # 如下
add.apply_async((2, 2), retry=True, retry_policy={
'max_retries': 3,
'interval_start': 0,
'interval_step': 0.2,
'interval_max': 0.2,
})
  • 自定义发布者,交换机,路由键, 队列, 优先级,序列方案和压缩方法:
task.apply_async((2,2),
compression='zlib',
serialize='json',
queue='priority.high',
routing_key='web.add',
priority=0,
exchange='web_exchange')

获取任务结果和状态

由于celery发送的都是去其他进程执行的任务,如果需要在客户端监控任务的状态,有如下方法:

r = task.apply_async()
r.ready() # 查看任务状态,返回布尔值, 任务执行完成, 返回 True, 否则返回 False.
r.wait() # 会阻塞等待任务完成, 返回任务执行结果,很少使用;
r.get(timeout=1) # 获取任务执行结果,可以设置等待时间,如果超时但任务未完成返回None;
r.result # 任务执行结果,未完成返回None;
r.state # PENDING, START, SUCCESS,任务当前的状态
r.status # PENDING, START, SUCCESS,任务当前的状态
r.successful # 任务成功返回true
r.traceback # 如果任务抛出了一个异常,可以获取原始的回溯信息

但是一般业务中很少用到,因为获取任务执行的结果需要阻塞,celery使用场景一般是不关心结果的。

使用celery

# seting.py
# 设置配置
BROKER_URL = 'amqp://username:password@localhost:5672/yourvhost'
CELERY_RESULT_BACKEND = 'redis://localhost:6379/0'
CELERY_TASK_SERIALIZER = 'msgpack'
CELERY_RESULT_SERIALIZER = 'msgpack'
CELERY_TASK_RESULT_EXPIRES = 60 * 60 * 24
CELERY_ACCEPT_CONTENT = ["msgpack"]
CELERY_DEFAULT_QUEUE = "default"
CELERY_QUEUES = {
"default": { # 这是上面指定的默认队列
"exchange": "default",
"exchange_type": "direct",
"routing_key": "default"
}
} # app.py --- 初始化celery对象
from celery import Celery
import seting
from task import test_one, test_two celery = Celery(__name__, include=["task"]) # 设置需要导入的模块
# 引入配置文件
celery.config_from_object(seting) if __name__ == '__main__':
test_one.apply_async((2,2),
routing_key='default',
priority=0,
exchange='default') # task.py --- 定义需要执行的任务
from app import celery @celery.task
def test_one(x, y):
return x + y @celery.task(name="one_name")
def test_two(x, y):
return x * y

小结

分析了celery任务一些方法参数和相关源码,接下来我们去研究celery更复杂的用法。

参考

python之celery使用详解(二)的更多相关文章

  1. python中常用模块详解二

    log模块的讲解 Python 使用logging模块记录日志涉及四个主要类,使用官方文档中的概括最为合适: logger提供了应用程序可以直接使用的接口API: handler将(logger创建的 ...

  2. python之celery使用详解一

    前段时间需要使用rabbitmq做写缓存,一直使用pika+rabbitmq的组合,pika这个模块虽然可以很直观地操作rabbitmq,但是官方给的例子太简单,对其底层原理了解又不是很深,遇到很多坑 ...

  3. python中threading模块详解(一)

    python中threading模块详解(一) 来源 http://blog.chinaunix.net/uid-27571599-id-3484048.html threading提供了一个比thr ...

  4. Python数据类型及其方法详解

    Python数据类型及其方法详解 我们在学习编程语言的时候,都会遇到数据类型,这种看着很基础也不显眼的东西,却是很重要,本文介绍了python的数据类型,并就每种数据类型的方法作出了详细的描述,可供知 ...

  5. Python中time模块详解

    Python中time模块详解 在平常的代码中,我们常常需要与时间打交道.在Python中,与时间处理有关的模块就包括:time,datetime以及calendar.这篇文章,主要讲解time模块. ...

  6. Python 列表(List)操作方法详解

    Python 列表(List)操作方法详解 这篇文章主要介绍了Python中列表(List)的详解操作方法,包含创建.访问.更新.删除.其它操作等,需要的朋友可以参考下   列表是Python中最基本 ...

  7. Python模块调用方式详解

    Python模块调用方式详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 模块,用一砣代码实现了某个功能的代码集合. 类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其 ...

  8. 爬虫入门之urllib库详解(二)

    爬虫入门之urllib库详解(二) 1 urllib模块 urllib模块是一个运用于URL的包 urllib.request用于访问和读取URLS urllib.error包括了所有urllib.r ...

  9. Python的logging模块详解

          Python的logging模块详解 作者:尹正杰  版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.日志级别 日志级别指的是产生的日志的事件的严重程度. 设置一个级别后,严重程度 ...

随机推荐

  1. 实训一(cocos2d-x相关)

    实训内容简介: 大四开始前系里安排的的集中实践环节,根据要求,开发app应用软件. 目标app:Stick_mxj 目的:继续对cocos2d-x的学习,完成实践环节,解决现在对引擎不是很清楚的一些问 ...

  2. Believe

    虽然上了一周的软件工程,可是还是不造软件工程是干什么的.听了一节gitlab,似懂非懂,感觉很高大上的样子,自己折腾了许久,还是没有进展,真心无奈. 真是件考验耐性的事~不过,so what?会成功的 ...

  3. vue 将值存储到vuex 报错问题

    报错 :Vuex - Computed property “name” was assigned to but it has no setter 如何解决: computed: { addModal: ...

  4. Razor - 标记简述

    详情请参考:http://www.runoob.com/aspnet/razor-intro.html 1.Razor 不是一种编程语言.它是服务器端的标记语言.基于服务器的代码(Visual Bas ...

  5. week5-Link Layer

    Technology:Internets and Packets course Layer 1 : Link Introduction/The Link Layer moving from histo ...

  6. Alpha 冲刺四

    团队成员 051601135 岳冠宇 051604103 陈思孝 031602629 刘意晗 031602248 郑智文 031602234 王淇 会议照片 项目燃尽图 项目进展 实现后端聊天接收,搜 ...

  7. Beta 冲刺 一

    团队成员 051601135 岳冠宇 031602629 刘意晗 031602248 郑智文 031602330 苏芳锃 031602234 王淇 照片 项目进展 岳冠宇 昨天的困难 无 今天的进度 ...

  8. Linux命令(二十七) 用户组管理命令

    Linux提供了一系列的命令管理用户组.用户组就是具有相同特征的用户集合.每个用户都有一个用户组,系统能对一个用户组中所有用户进行集中管理,通过把相同属性的用户定义到同一用户组,并赋予该用户自一定的操 ...

  9. delphi执行查询语句时的进度条怎么做

    procedure TForm1.FormCreate(Sender: TObject);  begin     ADOQuery1.ExecuteOptions := [eoAsyncFetch]; ...

  10. Java之Map的使用场景

    总结之 Map接口 的使用场景(day04) Map: Map中的集合,元素是成对存在的(理解为夫妻).每个元素由键与值两部分组成,通过键可以找对所对应的值 Map中的集合不能包含重复的键,值可以重复 ...