一脸不可做题~~~233333

T<=100000,所以一定要logn出解啦。

但是完全没有头绪*&#……%*&……()……#¥*#@

题解:

因为2^p+2^p=2^(p+1)

发现这个式子和原式很像诶~~~

所以:2^(kab)+2^(kab)=2^(kab+1)

发现,只要选择合适的k,使得(kab+1)|c即可。

即:kab+1=lc

lc-kab=1

exgcd出解。

因为(a,b,c)=1所以一定有解。

然后快速幂整出来x,y,z,对m取余

但是,当m是2的整次幂的时候,可能出现的问题是,x/y/z为0

因为要选择(0,m)的数,所以0不行。

然后,因为m已经是2的整次幂,而且m>=3

所以,可以特殊考虑。

if a>1 x=m/2,y=1,z=1 (因为m/2的次幂一定mod m 为0)

else if b>1 x=1,y=m/2,z=1

else if c>1(此时a,b都是1啦) x=y=z=m/2 (两边都是0)

else (全是1) x=1,y=1,z=2

所以,综上讨论,不会出现无解的情况的。

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a,b,c,t;
ll m;
ll l,k;
ll x,y,z;
void exgcd(ll a0,ll b0,ll &x,ll &y){
if(b0==){
x=,y=;return;
}
exgcd(b0,a0%b0,y,x);
y-=(a0/b0)*x;
}
ll qm(ll x,ll y){
ll ret=;
while(y){
if(y&) ret=(ret*x)%m;
x=(x*x)%m;
y>>=;
}
return ret%m;
}
int main(){
scanf("%lld",&t);
while(t--){
scanf("%lld",&m);
scanf("%lld%lld%lld",&a,&b,&c);
l=,k=;
exgcd(c,a*b,l,k);
k=-k;
if(k<){
ll p=(-k)/c+;
k=k+c*p;
l=l+p*a*b;
}
else if(k>){
ll p=k/c;
k-=p*c;
l-=p*a*b;
}
x=qm(,k*b);
y=qm(,k*a);
z=qm(,l);
if(x==||y==||z==){
if(a>){
x=m/;
y=;z=;
}
else if(b>){
y=m/;
x=;z=;
}
else if(c>){
x=y=z=m/;
}
else {
x=,y=,z=;
}
}
printf("%lld %lld %lld\n",x,y,z);
}
}

总结:

这种题怎么想??

瞎搞好了。

怎么就能想到2^(kab)+2^(kab)=2^(kab+1)呢?鬼知道。

(xa+yb) Mod m=(zc) Mod m

51nod 1479 小Y的数论题的更多相关文章

  1. 1479 小Y的数论题

    小Y喜欢研究数论,并且喜欢提一些奇怪的问题.这天他找了三个两两互质的数a, b, c,以及另一个数m, 现在他希望找到三个(0, m)范围内的整数x, y, z,使得 (xa+yb) Mod m=(z ...

  2. 51nod 1471 小S的兴趣 | 分块 链表

    51nod 1471 小S的兴趣 题面 小S喜欢有趣的事.但是,每个人的兴趣都是独特的.小S热衷于自问自答.有一天,小S想出了一个问题. 有一个包含n个正整数的数组a和针对这个数组的几个问题.这些问题 ...

  3. C - 小Y上学记——认识新同学

    C - 小Y上学记——认识新同学 Time Limit: 4000/2000MS (Java/Others)    Memory Limit: 128000/64000KB (Java/Others) ...

  4. 【luogu P4007 清华集训2017】小Y和恐怖奴隶主

    题目背景 “A fight? Count me in!” 要打架了,算我一个. “Everyone, get in here!” 所有人,都过来! 题目描述 小 Y 是一个喜欢玩游戏的 OIer.一天 ...

  5. 【luogu P4005 清华集训2017】小Y和地铁

    题目描述 小 Y 是一个爱好旅行的 OIer.一天,她来到了一个新的城市.由于不熟悉那里的交通系统,她选择了坐地铁. 她发现每条地铁线路可以看成平面上的一条曲线,不同线路的交点处一定会设有 换乘站 . ...

  6. 【UOJ#340】【清华集训2017】小 Y 和恐怖的奴隶主(矩阵快速幂,动态规划)

    [UOJ#340][清华集训2017]小 Y 和恐怖的奴隶主(矩阵快速幂,动态规划) 题面 UOJ 洛谷 题解 考虑如何暴力\(dp\). 设\(f[i][a][b][c]\)表示当前到了第\(i\) ...

  7. LOJ #6089. 小 Y 的背包计数问题

    LOJ #6089. 小 Y 的背包计数问题 神仙题啊orz. 首先把数分成\(<=\sqrt n\)的和\(>\sqrt n\)的两部分. \(>\sqrt n\)的部分因为最多选 ...

  8. 【LOJ6089】小Y的背包计数问题(动态规划)

    [LOJ6089]小Y的背包计数问题(动态规划) 题面 LOJ 题解 神仙题啊. 我们分开考虑不同的物品,按照编号与\(\sqrt n\)的关系分类. 第一类:\(i\le \sqrt n\) 即需要 ...

  9. 【LG4317】花神的数论题

    [LG4317]花神的数论题 题面 洛谷 题解 设\(f_{i,up,tmp,d}\)表示当前在第\(i\)位,是否卡上界,有\(tmp\)个一,目标是几个一的方案数 最后将所有\(d\)固定,套数位 ...

随机推荐

  1. 2017-2018-2 20155310『网络对抗技术』Exp5:MSF基础应用

    2017-2018-2 20155310『网络对抗技术』Exp5:MSF基础应用 基础问题回答 用自己的话解释什么是exploit,payload,encode exploit:由攻击者或渗透测试者利 ...

  2. Java通过pinyin4j实现汉字转拼音

       碰到个需求,需要按用户名字的首字母来排序.这就需要获取汉字对应的拼音了,突然就想起了pinyin4j这个jar包,于是就开始写了个汉字转拼音的工具类.在此记录一下,方便后续查阅 一.Pom依赖 ...

  3. jsp页面中日期的格式化

            在一次开发中,由于数据库中生日采用的是datetime的数据类型,因此数据库中数据格式为:2017-07-11 00:00:00. 但是,编辑页面中回显生日肯定是不可以显示出时分秒的, ...

  4. STM32-M0中断优先级介绍

    先解释中断优先级,后面讲代码的实现. 差异:M0的中断优先级相比于M4,没有用到分组,且只用到了2个bit位(即0~3)来设置,数值越小,优先级越高:同等优先级,根据终端号的大小来决定谁先执行. 根据 ...

  5. LoRa---射频信号接收框架简图介绍

    LoRa整体框架图如下: 内容下次再填! 内容补上: 射频信号的接收流程(小博并非专业,错了emmmmm轻喷):射频--->中频--->基带,下面按照图中标的序号开始介绍: 1.天线接受射 ...

  6. python删除文件与目录的方法

    python内置方法删除目录(空目录与非空目录)及文件 1.os.remove(file_path):删除文件 #PPTV是文件夹,xen.txt是文件 >>> os.remove( ...

  7. [CF1083D]The Fair Nut’s getting crazy[单调栈+线段树]

    题意 给定一个长度为 \(n\) 的序列 \(\{a_i\}\).你需要从该序列中选出两个非空的子段,这两个子段满足 两个子段非包含关系. 两个子段存在交. 位于两个子段交中的元素在每个子段中只能出现 ...

  8. Spring+SpringMVC+MyBatis整合基础篇(三)搭建步骤

    作者:13GitHub:https://github.com/ZHENFENG13版权声明:本文为原创文章,未经允许不得转载. 框架介绍 Spring SpringMVC MyBatis easyUI ...

  9. kafka0.8--0.11各个版本特性预览介绍

    kafka-0.8.2 新特性 producer不再区分同步(sync)和异步方式(async),所有的请求以异步方式发送,这样提升了客户端效率.producer请求会返回一个应答对象,包括偏移量或者 ...

  10. 小知识点--crontab

    前言 这两周学了很多东西,还把golang语言基本掌握了,收获还是挺多的.在做安全的过程中,有很多需要定时执行的任务,比如抓取主机数量,端口数据等,这都逃不开linux中的crontab命令,今天分享 ...