Description

Solution

f[i]表示状态i所代表的点构成的强连通图方案数。

g[i]表示状态i所代表的的点形成奇数个强连通图的方案数-偶数个强连通图的方案数。

g是用来容斥的。

先用f更新g。枚举状态i的编号最小点k所在连通块大小i-j,$g[i]=-\sum _{j\subset i}f[i-j]*g[j]$(此处g中不更新强连通图个数为1的。

设点集i中有sum条边,则:

$f[i]=2^{sum}-\sum _{j\subset i}2^{sum-w[j]}*g[j]$。其中w[j]是i射向j的边数,这些边被钦定不能选。

最后记得用f[i]更新g[i]。

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
const int mod=1e9+;
int n,m,x,y;
int in[],out[];
int num[],sum[];
ll f[],g[],bin[],w[];
void calw(int s,int c)
{
if (!c) return;
calw(s,(c-)&s);
w[c]=w[c^(c&-c)]+num[in[c&-c]&s];
}
int main()
{
scanf("%d%d",&n,&m);
bin[]=;for (int i=;i<=m;i++) bin[i]=(bin[i-]<<)%mod;
for (int i=;i<=m;i++)
{
scanf("%d%d",&x,&y);x--;y--;
in[bin[y]]|=bin[x];
out[bin[x]]|=bin[y];
}
for (int i=;i<bin[n];i++) for (int j=;j<n;j++)
if (i&bin[j]) num[i]++; for (int i=;i<bin[n];i++)
{
int lowbit=i&-i,s=i^lowbit;
for (int j=s;j;j=s&(j-)) g[i]=(g[i]-f[j^i]*g[j]%mod)%mod; sum[i]=sum[s]+num[in[lowbit]&s]+num[out[lowbit]&s];
f[i]=bin[sum[i]];
calw(i,i); for (int j=i;j;j=i&(j-))
{
f[i]=(f[i]-bin[sum[i]-w[j]]*g[j]%mod+mod)%mod;
}
g[i]+=f[i];if (g[i]>=mod) g[i]%=mod;
}
cout<<f[bin[n]-]; }

[清华集训2015 Day1]主旋律-[状压dp+容斥]的更多相关文章

  1. BZOJ 3812 主旋律 (状压DP+容斥) + NOIP模拟赛 巨神兵(obelisk)(状压DP)

    这道题跟另一道题很像,先看看那道题吧 巨神兵(obelisk) 题面 欧贝利斯克的巨神兵很喜欢有向图,有一天他找到了一张nnn个点mmm条边的有向图.欧贝利斯克认为一个没有环的有向图是优美的,请问这张 ...

  2. codeforces 342D Xenia and Dominoes(状压dp+容斥)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud D. Xenia and Dominoes Xenia likes puzzles ...

  3. bzoj2669 [cqoi2012]局部极小值 状压DP+容斥

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2669 题解 可以发现一个 \(4\times 7\) 的矩阵中,有局部最小值的点最多有 \(2 ...

  4. 一本通 1783 矩阵填数 状压dp 容斥 计数

    LINK:矩阵填数 刚看到题目的时候感觉是无从下手的. 可以看到有n<=2的点 两个矩形. 如果只有一个矩形 矩形外的方案数容易计算考虑 矩形内的 必须要存在x这个最大值 且所有值<=x. ...

  5. P3160 [CQOI2012]局部极小值 题解(状压DP+容斥)

    题目链接 P3160 [CQOI2012]局部极小值 双倍经验,双倍快乐 解题思路 存下来每个坑(极小值点)的位置,以这个序号进行状态压缩. 显然,\(4*7\)的数据范围让极小值点在8个以内(以下示 ...

  6. HDU 5838 (状压DP+容斥)

    Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的 ...

  7. uoj#37. 【清华集训2014】主旋律(状压dp+容斥)

    传送门 第一眼容斥,然后我就死活容不出来了-- 记\(f_i\)为点集\(i\)中的点强联通的方案数,那么就是总的方案数减去使\(i\)不连通的方案数 如果\(i\)不连通的话,我们可以枚举缩点之后拓 ...

  8. bzoj2560串珠子 状压dp+容斥(?)

    2560: 串珠子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 515  Solved: 348[Submit][Status][Discuss] ...

  9. NOIp模拟赛 巨神兵(状压DP 容斥)

    \(Description\) 给定\(n\)个点\(m\)条边的有向图,求有多少个边集的子集,构成的图没有环. \(n\leq17\). \(Solution\) 问题也等价于,用不同的边集构造DA ...

随机推荐

  1. QQ运动步数&自定义ProgressBar

    效果如下 gif图展示效果不好,实际体验无卡顿 1.自定义属性 早Values目录下New-values resource file,命名为attrs.xml(命名随意,但规范命名为attrs.xml ...

  2. Python+Selenium笔记(七):WebDriver和WebElement

    (一)  WebDriver WebDriver提供许多用来与浏览器交互的功能和设置,通过WebDriver的功能和一些方法,来实现与浏览器窗口.警告.框架和弹出窗口的交互,它也提供了自动化操作浏览器 ...

  3. go语言练习:sha256、sha512哈希算法

    package main import ( "fmt" "crypto/sha256") func main() { str:="test hash. ...

  4. 使用动态SQL创建数据库

    /*其实我也搞不懂为什么要用SQL来创建,明明SQL Server有图形化创建数据库多省事啊!*/USE master; ​DECLARE @sqlstr nvarchar(max)/*定义一个变量* ...

  5. 解决JBoss只能通过localhost访问不能通过IP的问题

    前序 现在EJB是真的有点落伍了么,网上找点资料都挺难的样子,而且都是很久的了..好吧,最近对EJB有点兴趣学习一下,结果下载到服务器启动后,居然不能直接通过服务器IP访问,也是醉了,默认只能通过本地 ...

  6. android的hwc浅析【转】

    https://blog.csdn.net/alien75/article/details/39290109 注:本文档基于kk进行分析,着重于概念的精确定义和版本历史演变 一.关于hwc的介绍 广义 ...

  7. [Spark RDD_add_1] groupByKey & reduceBykey 的区别

    [groupByKey & reduceBykey 的区别] 在都能实现相同功能的情况下优先使用 reduceBykey Combine 是为了减少网络负载 1. groupByKey 是没有 ...

  8. Coursera-AndrewNg(吴恩达)机器学习笔记——第四周

    神经网络 1.神经网络发展的动力:在逻辑回归解决复杂的分类问题时,我们使用属性的一些组合来构造新的属性(x12,x1x2,x22...),这样就会造成属性的数目n过多,带来了大量的运算,甚至造成过拟合 ...

  9. php 错误1

    Maximum execution time of 30 seconds exceeded 方法一,修改php.ini文件 max_execution_time = 30; Maximum execu ...

  10. BZOJ5334:[TJOI2018]数学计算(线段树)

    Description 小豆现在有一个数x,初始值为1. 小豆有Q次操作,操作有两种类型:  1 m: x = x  *  m ,输出 x%mod; 2 pos: x = x /  第pos次操作所乘 ...