Dijkstra和Prim算法的区别

1.先说说prim算法的思想:

众所周知,prim算法是一个最小生成树算法,它运用的是贪心原理(在这里不再证明),设置两个点集合,一个集合为要求的生成树的点集合A,另一个集合为未加入生成树的点B,它的具体实现过程是:

第1步:所有的点都在集合B中,A集合为空。

第2步:任意以一个点为开始,把这个初始点加入集合A中,从集合B中减去这个点(代码实现很简单,也就是设置一个标示数组,为false表示这个点在B中,为true表示这个点在A中),寻找与它相邻的点中路径最短的点,如后把这个点也加入集合A中,从集合B中减去这个点(代码实现同上)。

第3步:集合A中已经有了多个点,这时两个集合A和B,只要找到A集合中的点到B集合中的点的最短边,可以是A集合中的与B集合中的点的任意组合,把这条最短边有两个顶点,把在集合B中的顶点加入到集合A中,(代码实现的时候有点技巧,不需要枚举所有情况,也就是更新操作)。

第4步:重复上述过程。一直到所有的点都在A集合中结束。

2.说说dijkstra算法的过程:

这个算法的过程有比prim算法的过程稍微多一点点步骤,但是思想确实巧妙的,也是贪心原理,它的目的是求某个源点到目的点的最短距离,总的来说,dijkstra算法也就是求某个源点到目的点的最短路,求解的过程也就是求源点到整个图的最短距离,次短距离,第三短距离等等(这些距离都是源点到某个点的最短距离)。。。。。求出来的每个距离都对应着一个点,也就是到这个点的最短距离,求的也就是原点到所有点的最短距离,并且存在了一个二维数组中,最后给出目的点就能直接通过查表获得最短距离。

第1步:以源点(假设是s1)为开始点,求最短距离,如何求呢? 与这个源点相邻的点与源点的距离全部放在一个数组dist[]中,如果不可达,dist[]中为最大值,这里说一下,为什么要是一维数组,原因是默认的是从源点到这个一维数组下标的值,只需要目的点作为下标就可以,这时从源点到其他点的最短的“一”条路径有了,只要选出dist[]中最小的就行(得到最短路径的另一个端点假设是s2)。

第2步:这时要寻找源点(假设是s1)到另外点的次短距离,这个距离或者是dist[]里面的值,或者是从第1步中选择的那个最短距离 + 从找到点(假设是s2)出发到其他点的距离(其实这里也是一个更新操作,更新的是dist[]里面的值),如果最短距离 + 从这点(假设是s2)到其他点的距离,小于dist[]里面的值,就可以更新dist[]数组了,然后再从dist[]数组中选一个值最小的,也就是第“二”短路径(次短路径)。

第3步:寻找第“三”短路径,这时同上,第二短路径的端点(s3)更新与之相邻其他的点的dist[]数组里面的值。

第4步:重复上述过程n - 1次(n指的是节点个数),得出结果,其实把源点到所有点的最短路径求出来了,都填在了dist[]表中,要找源点到哪个点的最短路,就只需要查表了。

Dijkstra模版:

//dijkstra算法模版,狄杰斯特拉算法模板,单源最短路模板
//dijkstra算法模版 #include <stdio.h>
#include <string.h>
#define MaxN 1001
#define MaxInt 200000000
int map[MaxN][MaxN],dist[MaxN];
bool mark[MaxN];
int n,start,end;
int main()
{
int i,j,min1,minj,temp; //****************输入**********************
scanf("%d%d%d",&n,&start,&end);
for (i=;i<=n;i++)
for (j=;j<=n;j++)
scanf("%d",&map[i][j]);
//******************************************
//*****************初始化**********************
for (i=;i<=MaxN;i++)
dist[i]=MaxInt;
memset(mark,,sizeof(mark));
dist[start]=; //把起点并入集合,搜索时就可以从起点寻找到第一条最短的边了
//*********************************************
for (i=;i<=n-;i++)
{
min1=MaxInt;
for (j=;j<=n;j++) //查找到原集合的最短的边
{
if (!mark[j]&&dist[j]<min1)
{
min1=dist[j];
minj=j;
}
}
mark[minj]=;
for (j=;j<=n;j++) //每并入一个点都要对原来的边进行修正,保证任意时刻源点到目标点的距离都是最短的。
{
if (!mark[j]&&map[minj][j]>)
{
temp=dist[minj]+map[minj][j];
if (temp<dist[j])
dist[j]=temp;
}
}
}
//***********输出***************
printf("%d\n",dist[end]);
//******************************
return ;
}
Prim算法中寻找的是下一个与MST中任意顶点相距最近的顶点;  
Dijkstra算法寻找的是下一个离给定顶点(单源)最近的顶点。
另外,当有两条具有同样的最小权值的边可供选择时,任选一条即可,所以构造的MST不是惟一的。
Prim算法和Dijkstra算法十分相似,惟一的区别是: Prim算法要寻找的是离已加入顶点距离最近的顶点;
Dijkstra算法是寻找离固定顶点距离最近的顶点。
所以Prim算法的时间复杂度分析与Dijkstra算法相同,都是 O(|V^2|) 【拓】:Kruskal算法:http://baike.baidu.com/link?url=MchMLaw4a3nLu3bWSoEUEak-DYbM8n0H27ANKE5-Gv_frudxAvGfsqdpNRqDtdB0

克鲁斯卡尔(Kruskal)算法(只与边相关)

算法描述:克鲁斯卡尔算法需要对图的边进行访问,所以克鲁斯卡尔算法的时间复杂度只和边又关系,可以证明其时间复杂度为O(eloge)。

算法过程:

1.将图各边按照权值进行排序

2.将图遍历一次,找出权值最小的边,(条件:此次找出的边不能和已加入最小生成树集合的边构成环),若符合条件,则加入最小生成树的集合中。

不符合条件则继续遍历图,寻找下一个最小权值的边。

3.递归重复步骤1,直到找出n-1条边为止(设图有n个结点,则最小生成树的边数应为n-1条),算法结束。得到的就是此图的最小生成树。

克鲁斯卡尔(Kruskal)算法因为只与边相关,则适合求稀疏图的最小生成树。而prime算法因为只与顶点有关,所以适合求稠密图的最小生成树。

代码:

#include<iostream>
#include<cstring>
#include<string> #include<cstdio>
#include<algorithm>
using namespace std;
#define MAX 1000
int father[MAX], son[MAX];
int v, l; typedef struct Kruskal //存储边的信息
{
int a;
int b;
int value;
}; bool cmp(const Kruskal & a, const Kruskal & b)
{
return a.value < b.value;
} int unionsearch(int x) //查找根结点+路径压缩
{
return x == father[x] ? x : unionsearch(father[x]);
} bool join(int x, int y) //合并
{
int root1, root2;
root1 = unionsearch(x);
root2 = unionsearch(y);
if(root1 == root2) //为环
return false;
else if(son[root1] >= son[root2])
{
father[root2] = root1;
son[root1] += son[root2];
}
else
{
father[root1] = root2;
son[root2] += son[root1];
}
return true;
} int main()
{
int ncase, ltotal, sum, flag;
Kruskal edge[MAX];
scanf("%d", &ncase);
while(ncase--)
{
scanf("%d%d", &v, &l);
ltotal = , sum = , flag = ;
for(int i = ; i <= v; ++i) //初始化
{
father[i] = i;
son[i] = ;
}
for(int i = ; i <= l ; ++i)
{
scanf("%d%d%d", &edge[i].a, &edge[i].b, &edge[i].value);
}
sort(edge + , edge + + l, cmp); //按权值由小到大排序
for(int i = ; i <= l; ++i)
{
if(join(edge[i].a, edge[i].b))
{
ltotal++; //边数加1
sum += edge[i].value; //记录权值之和
cout<<edge[i].a<<"->"<<edge[i].b<<endl;
}
if(ltotal == v - ) //最小生成树条件:边数=顶点数-1
{
flag = ;
break;
}
}
if(flag) printf("%d\n", sum);
else printf("data error.\n");
}
return ;
}

Dijkstra和Prim算法的区别的更多相关文章

  1. Prim算法与Dijkstra算法的联系与区别

    /* 图结构,邻接矩阵形式 */ ElemType nodes[n]; int edges[n][n]; prim_or_dijkstra( int index, bool usePrim ) /* ...

  2. 【最短路算法】Dijkstra+heap和SPFA的区别

    单源最短路问题(SSSP)常用的算法有Dijkstra,Bellman-Ford,这两个算法进行优化,就有了Dijkstra+heap.SPFA(Shortest Path Faster Algori ...

  3. Dijkstra 算法、Kruskal 算法、Prim算法、floyd算法

    1.dijkstra算法 算最短路径的,算法解决的是有向图中单个源点到其他顶点的最短路径问题. 初始化n*n的数组. 2.kruskal算法 算最小生成树的,按权值加入 3.Prim算法 类似dijk ...

  4. 数据结构与算法系列研究七——图、prim算法、dijkstra算法

    图.prim算法.dijkstra算法 1. 图的定义 图(Graph)可以简单表示为G=<V, E>,其中V称为顶点(vertex)集合,E称为边(edge)集合.图论中的图(graph ...

  5. 【算法】prim算法(最小生成树)(与Dijkstra算法的比较)

    最小生成树: 生成树的定义:给定一个无向图,如果它的某个子图中任意两个顶点都互相连通并且是一棵树,那么这棵树就叫做生成树.(Spanning Tree) 最小生成树的定义:在生成树的基础上,如果边上有 ...

  6. Prim算法、Kruskal算法、Dijkstra算法

    无向加权图 1.生成树(minimum spanning trees) 图的生成树是它一棵含有所有顶点的无环联通子图 最小生成树:生成树中权值和最小的(所有边的权值之和) Prim算法.Kruskal ...

  7. 朴素版和堆优化版dijkstra和朴素版prim算法比较

    1.dijkstra 时间复杂度:O(n^2) n次迭代,每次找到距离集合S最短的点 每次迭代要用找到的点t来更新其他点到S的最短距离. #include<iostream> #inclu ...

  8. 算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法

    一.名称 动态规划法应用 二.目的 1.贪婪技术的基本思想: 2.学会运用贪婪技术解决实际设计应用中碰到的问题. 三.要求 1.实现基于贪婪技术思想的Prim算法: 2.实现基于贪婪技术思想的Dijk ...

  9. 【树论 1】 prim算法的学习和使用

    进阶版神犇可以看看本题解的姊妹篇 Kruskal算法的学习和使用 下面的内容是prim算法 但是最小生成树是什么呢? 标准定义如下:在边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值 ...

随机推荐

  1. EF查询某个时间段内的数据遇到坑!

    第一个问题 var res = pwDb.Set<WorkInfo>().Where(t => t.WorkTime > startTime && t.Work ...

  2. Unity相机跟随-----根据速度设置偏移量

    这里假设在水中的船,船有惯性,在不添加前进动力的情况下会继续移动,但是船身是可以360度自由旋转,当船的运动速度在船的前方的时候,相机会根据向前的速度的大小,设置相机的偏移量,从而提高游戏的动态带感. ...

  3. OCP新题,2019题库出现大量新题,062-第22题

    choose two Your database is running in ARCHIVELOG mode. You want to take a consistent whole database ...

  4. 说一下acad的bug及问题

    using Autodesk.AutoCAD.ApplicationServices; using Autodesk.AutoCAD.DatabaseServices; using Autodesk. ...

  5. Swift5 语言参考(六) 声明

    一个声明引入了一个新的名称或构建到你的程序.例如,您使用声明来引入函数和方法,引入变量和常量,以及定义枚举,结构,类和协议类型.您还可以使用声明来扩展现有命名类型的行为,并将符号导入到其他地方声明的程 ...

  6. java打包jar后,使之一直在linux上运行,不随终端退出而关闭

      nohup java -jar xxx.jar&

  7. 如何做好错误处理?(PHP篇)

    起因 之前我在封装 PHP 一个类库的时候,如果有遇到错误(例如构造函数传参不合法的话),则直接 die() ,后来发现这种方法很不好,会直接退出程序. 所以我想到给 PHP 上异常捕获的机制了. 错 ...

  8. POJ 2860

    #include<iostream> #define MAXN 20 using namespace std; int a_1[MAXN]; int a_2[MAXN]; int main ...

  9. Python相关在线文档手册地址

    Python相关: 五星推荐:http://python.usyiyi.cn/ Python 2.7官方中文文档:http://doc.iplaypy.com/python2/  英文:    htt ...

  10. 【VC版】如何获取其他进程中ListView控件中的内容

    如果需要C#版的,可以看下我之前写的:C#如何获取其他程序ListView控件中的内容 获取其他进程的数据需要使用到以下几个函数: VirtualAllocEx() VirtualFreeEx() W ...