select to_char(日期,'yyyy-mm-dd') from( select to_date('2016-01-01','yyyy-mm-dd') + level 日期 from dual
connect by level <=to_date('2016-12-31','yyyy-mm-dd')-to_date('2016-01-01','yyyy-mm-dd'));

结果:

"日期"
"2016-01-02"
"2016-01-03"
"2016-01-04"
"2016-01-05"
"2016-01-06"
"2016-01-07"
"2016-01-08"
"2016-01-09"
"2016-01-10"
"2016-01-11"
"2016-01-12"
"2016-01-13"
"2016-01-14"
"2016-01-15"
"2016-01-16"
"2016-01-17"
"2016-01-18"
"2016-01-19"
"2016-01-20"
"2016-01-21"
"2016-01-22"
"2016-01-23"
"2016-01-24"
"2016-01-25"
"2016-01-26"
"2016-01-27"
"2016-01-28"
"2016-01-29"
"2016-01-30"
"2016-01-31"
"2016-02-01"
"2016-02-02"
"2016-02-03"
"2016-02-04"
"2016-02-05"
"2016-02-06"
"2016-02-07"
"2016-02-08"
"2016-02-09"
"2016-02-10"
"2016-02-11"
"2016-02-12"
"2016-02-13"
"2016-02-14"
"2016-02-15"
"2016-02-16"
"2016-02-17"
"2016-02-18"
"2016-02-19"
"2016-02-20"
"2016-02-21"
"2016-02-22"
"2016-02-23"
"2016-02-24"
"2016-02-25"
"2016-02-26"
"2016-02-27"
"2016-02-28"
"2016-02-29"
"2016-03-01"
"2016-03-02"
"2016-03-03"
"2016-03-04"
"2016-03-05"
"2016-03-06"
"2016-03-07"
"2016-03-08"
"2016-03-09"
"2016-03-10"
"2016-03-11"
"2016-03-12"
"2016-03-13"
"2016-03-14"
"2016-03-15"
"2016-03-16"
"2016-03-17"
"2016-03-18"
"2016-03-19"
"2016-03-20"
"2016-03-21"
"2016-03-22"
"2016-03-23"
"2016-03-24"
"2016-03-25"
"2016-03-26"
"2016-03-27"
"2016-03-28"
"2016-03-29"
"2016-03-30"
"2016-03-31"
"2016-04-01"
"2016-04-02"
"2016-04-03"
"2016-04-04"
"2016-04-05"
"2016-04-06"
"2016-04-07"
"2016-04-08"
"2016-04-09"
"2016-04-10"
"2016-04-11"
"2016-04-12"
"2016-04-13"
"2016-04-14"
"2016-04-15"
"2016-04-16"
"2016-04-17"
"2016-04-18"
"2016-04-19"
"2016-04-20"
"2016-04-21"
"2016-04-22"
"2016-04-23"
"2016-04-24"
"2016-04-25"
"2016-04-26"
"2016-04-27"
"2016-04-28"
"2016-04-29"
"2016-04-30"
"2016-05-01"
"2016-05-02"
"2016-05-03"
"2016-05-04"
"2016-05-05"
"2016-05-06"
"2016-05-07"
"2016-05-08"
"2016-05-09"
"2016-05-10"
"2016-05-11"
"2016-05-12"
"2016-05-13"
"2016-05-14"
"2016-05-15"
"2016-05-16"
"2016-05-17"
"2016-05-18"
"2016-05-19"
"2016-05-20"
"2016-05-21"
"2016-05-22"
"2016-05-23"
"2016-05-24"
"2016-05-25"
"2016-05-26"
"2016-05-27"
"2016-05-28"
"2016-05-29"
"2016-05-30"
"2016-05-31"
"2016-06-01"
"2016-06-02"
"2016-06-03"
"2016-06-04"
"2016-06-05"
"2016-06-06"
"2016-06-07"
"2016-06-08"
"2016-06-09"
"2016-06-10"
"2016-06-11"
"2016-06-12"
"2016-06-13"
"2016-06-14"
"2016-06-15"
"2016-06-16"
"2016-06-17"
"2016-06-18"
"2016-06-19"
"2016-06-20"
"2016-06-21"
"2016-06-22"
"2016-06-23"
"2016-06-24"
"2016-06-25"
"2016-06-26"
"2016-06-27"
"2016-06-28"
"2016-06-29"
"2016-06-30"
"2016-07-01"
"2016-07-02"
"2016-07-03"
"2016-07-04"
"2016-07-05"
"2016-07-06"
"2016-07-07"
"2016-07-08"
"2016-07-09"
"2016-07-10"
"2016-07-11"
"2016-07-12"
"2016-07-13"
"2016-07-14"
"2016-07-15"
"2016-07-16"
"2016-07-17"
"2016-07-18"
"2016-07-19"
"2016-07-20"
"2016-07-21"
"2016-07-22"
"2016-07-23"
"2016-07-24"
"2016-07-25"
"2016-07-26"
"2016-07-27"
"2016-07-28"
"2016-07-29"
"2016-07-30"
"2016-07-31"
"2016-08-01"
"2016-08-02"
"2016-08-03"
"2016-08-04"
"2016-08-05"
"2016-08-06"
"2016-08-07"
"2016-08-08"
"2016-08-09"
"2016-08-10"
"2016-08-11"
"2016-08-12"
"2016-08-13"
"2016-08-14"
"2016-08-15"
"2016-08-16"
"2016-08-17"
"2016-08-18"
"2016-08-19"
"2016-08-20"
"2016-08-21"
"2016-08-22"
"2016-08-23"
"2016-08-24"
"2016-08-25"
"2016-08-26"
"2016-08-27"
"2016-08-28"
"2016-08-29"
"2016-08-30"
"2016-08-31"
"2016-09-01"
"2016-09-02"
"2016-09-03"
"2016-09-04"
"2016-09-05"
"2016-09-06"
"2016-09-07"
"2016-09-08"
"2016-09-09"
"2016-09-10"
"2016-09-11"
"2016-09-12"
"2016-09-13"
"2016-09-14"
"2016-09-15"
"2016-09-16"
"2016-09-17"
"2016-09-18"
"2016-09-19"
"2016-09-20"
"2016-09-21"
"2016-09-22"
"2016-09-23"
"2016-09-24"
"2016-09-25"
"2016-09-26"
"2016-09-27"
"2016-09-28"
"2016-09-29"
"2016-09-30"
"2016-10-01"
"2016-10-02"
"2016-10-03"
"2016-10-04"
"2016-10-05"
"2016-10-06"
"2016-10-07"
"2016-10-08"
"2016-10-09"
"2016-10-10"
"2016-10-11"
"2016-10-12"
"2016-10-13"
"2016-10-14"
"2016-10-15"
"2016-10-16"
"2016-10-17"
"2016-10-18"
"2016-10-19"
"2016-10-20"
"2016-10-21"
"2016-10-22"
"2016-10-23"
"2016-10-24"
"2016-10-25"
"2016-10-26"
"2016-10-27"
"2016-10-28"
"2016-10-29"
"2016-10-30"
"2016-10-31"
"2016-11-01"
"2016-11-02"
"2016-11-03"
"2016-11-04"
"2016-11-05"
"2016-11-06"
"2016-11-07"
"2016-11-08"
"2016-11-09"
"2016-11-10"
"2016-11-11"
"2016-11-12"
"2016-11-13"
"2016-11-14"
"2016-11-15"
"2016-11-16"
"2016-11-17"
"2016-11-18"
"2016-11-19"
"2016-11-20"
"2016-11-21"
"2016-11-22"
"2016-11-23"
"2016-11-24"
"2016-11-25"
"2016-11-26"
"2016-11-27"
"2016-11-28"
"2016-11-29"
"2016-11-30"
"2016-12-01"
"2016-12-02"
"2016-12-03"
"2016-12-04"
"2016-12-05"
"2016-12-06"
"2016-12-07"
"2016-12-08"
"2016-12-09"
"2016-12-10"
"2016-12-11"
"2016-12-12"
"2016-12-13"
"2016-12-14"
"2016-12-15"
"2016-12-16"
"2016-12-17"
"2016-12-18"
"2016-12-19"
"2016-12-20"
"2016-12-21"
"2016-12-22"
"2016-12-23"
"2016-12-24"
"2016-12-25"
"2016-12-26"
"2016-12-27"
"2016-12-28"
"2016-12-29"
"2016-12-30"
"2016-12-31"

用sql 生成2016年全年的日期的更多相关文章

  1. 数据库技术丛书:SQL Server 2016 从入门到实战(视频教学版) PDF

    1:书籍下载方式: SQL Server2016从入门到实战 PDF 下载  链接:https://pan.baidu.com/s/1sWZjdud4RosPyg8sUBaqsQ 密码:8z7w 学习 ...

  2. SQL Server 2016 CTP2.3 的关键特性

    SQL Server 2016 CTP2.3 的关键特性 数据库方面的增强 Row Level Security已经支持In-memory OLTP 表.用户现在可以对内存优化表实施row-level ...

  3. SQL Server 2016 CTP2.2 的关键特性

    SQL Server 2016 CTP2.2 的关键特性 正如微软CEO 说的,SQL Server2016 是一个Breakthrough Flagship  Database(突破性的旗舰级数据库 ...

  4. SQL Server 2016的数据库范围内的配置

    SQL Server 2016真的让人眼前一亮.几天前微软就提供了RCO(候选发布版)版本的下载.我已经围观了一圈RCO版本,其中一个最拽的功能是数据库范围内的配置(Database Scoped C ...

  5. 在SQL Server 2016里使用查询存储进行性能调优

    作为一个DBA,排除SQL Server问题是我们的职责之一,每个月都有很多人给我们带来各种不能解释却要解决的性能问题. 我就多次听到,以前的SQL Server的性能问题都还好且在正常范围内,但现在 ...

  6. c#保存datagridview中的数据时报错 “动态SQL生成失败。找不到关键信息”

    ilovejinglei 原文 C#中保存datagridview中的数据时报错"动态SQL生成失败.找不到关键信息" 问题描述     相关代码 using System; us ...

  7. SQL Server ->> 深入探讨SQL Server 2016新特性之 --- Temporal Table(历史表)

    原文:SQL Server ->> 深入探讨SQL Server 2016新特性之 --- Temporal Table(历史表) 作为SQL Server 2016(CTP3.x)的另一 ...

  8. SQL Server 2016 查询存储性能优化小结

    SQL Server 2016已经发布了有半年多,相信还有很多小伙伴还没有开始使用,今天我们来谈谈SQL Server 2016 查询存储性能优化,希望大家能够喜欢 作为一个DBA,排除SQL Ser ...

  9. SQL Server ->> SQL Server 2016新特性之 -- Dynamic Data Masking

    Dynamic Data Masking是为了防止敏感数据暴露给未经授权的用户,以一种最小开销和维护成本的形式.Dynamic Data Masking用于表的字段,相当于盖住字段数据的一部分.比如一 ...

随机推荐

  1. as3.0 橡皮功能2

    package com{ import flash.display.MovieClip; import flash.display.Bitmap; import flash.display.Bitma ...

  2. Navicat连接mysql(高级选项配置)

    .对于服务器上的mysql中存在多个数据库,我们如果全部连接显示,但是平时使用的只有一个库,那么查询的速度会很慢的.所以,今天和大师兄学习了一招.只连接一个自己使用的数据库.配合高级设置,提升很多. ...

  3. HDU-1074.DoingHomework(撞鸭dp二进制压缩版)

    之前做过一道二进制压缩的题目,感觉也不是很难吧,但是由于见少识窄,这道题一看就知道是撞鸭dp,却总是无从下手....最后看了一眼博客,才顿悟,本次做这道题的作用知识让自己更多的认识二进制压缩,并无其它 ...

  4. TOJ2811: Bessie's Weight Problem(完全背包)

    传送门(<---可以点的) 描述 Bessie, like so many of her sisters, has put on a few too many pounds enjoying t ...

  5. Codeforces Beta Round #52 (Div. 2)

    Codeforces Beta Round #52 (Div. 2) http://codeforces.com/contest/56 A #include<bits/stdc++.h> ...

  6. TZOJ 3030 Courses(二分图匹配)

    描述 Consider a group of N students and P courses. Each student visits zero, one or more than one cour ...

  7. [BX]指令

    mov ax,[bx] 功能:bx中存放的数据作为一个偏移地址EA,段地址SA默认在ds中,将SA:EA处的数据送入ax中.即(ax)=((ds)*16+(bx)). mov [bx],ax 功能:b ...

  8. css常见问题一

    [1]禁止换行.class {word-break:keep-all;white-space:nowrap;}[2]强制换行.class{word-break:break-all;}普通容器中(Div ...

  9. linux修改hosts

    vim /etc/hosts

  10. A Spectral Technique for Correspondence Problems Using Pairwise Constraints

    Abstract 我们提出了一种有效的谱方法来寻找两组特征之间的一致对应关系.我们建立了一个图的邻接矩阵M,它的节点代表了潜在的对应,而链接上的权重代表潜在的对应之间的成对协议.正确的分配可在彼此之间 ...