题意

题目链接

Sol

正经做法不会,听lxl讲了一种很神奇的方法

我们考虑如果满足条件,那么需要具备什么条件

设mx为询问区间最大值,mn为询问区间最小值

  1. mx - mn = (r - l) * k

  2. 区间和 = mn * len + \(\frac{n * (n - 1)}{2} k\)

  3. \(\text{立方和} = \sum_{i = 1}^{len} (mn + (i - 1)k) ^2\)

第三条后面的可以直接推式子推出来(\(\sum_{i = 1}^n i^2 = \frac{n(n+1)(2n+1)}{6}\))

最后的/6可以直接乘一下然后ull自然溢出。

#include<bits/stdc++.h>
#define ull unsigned long long
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 4e6 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M;
#define ls k << 1
#define rs k << 1 | 1
struct {
int l, r, mn, mx;
ull s, s2;
}T[MAXN];
void update(int k) {
T[k].mn = min(T[ls].mn, T[rs].mn);
T[k].mx = max(T[ls].mx, T[rs].mx);
T[k].s = T[ls].s + T[rs].s;
T[k].s2 = T[ls].s2 + T[rs].s2;
}
void Build(int k, int ll, int rr) {
T[k].l = ll; T[k].r = rr;
if(ll == rr) {T[k].mn = T[k].mx = T[k].s = read(); T[k].s2 = T[k].s * T[k].s ; return ;}
int mid = ll + rr >> 1;
Build(ls, ll, mid); Build(rs, mid + 1, rr);
update(k);
}
void Modify(int k, int p, int v) {
if(T[k].l == T[k].r) {T[k].mn = T[k].mx = T[k].s = v; T[k].s2 = T[k].s * T[k].s; return ;}
int mid = T[k].l + T[k].r >> 1;
if(p <= mid) Modify(ls, p, v);
if(p > mid) Modify(rs, p, v);
update(k);
}
int QueryMn(int k, int ql, int qr) {
if(ql <= T[k].l && T[k].r <= qr) return T[k].mn;
int mid = T[k].l + T[k].r >> 1;
if(ql > mid) return QueryMn(rs, ql, qr);
else if(qr <= mid) return QueryMn(ls, ql, qr);
else return min(QueryMn(ls, ql, qr), QueryMn(rs, ql, qr));
}
int QueryMx(int k, int ql, int qr) {
if(ql <= T[k].l && T[k].r <= qr) return T[k].mx;
int mid = T[k].l + T[k].r >> 1;
if(ql > mid) return QueryMx(rs, ql, qr);
else if(qr <= mid) return QueryMx(ls, ql, qr);
else return max(QueryMx(ls, ql, qr), QueryMx(rs, ql, qr));
}
ull QuerySum(int k, int ql, int qr) {
if(ql <= T[k].l && T[k].r <= qr) return T[k].s;
int mid = T[k].l + T[k].r >> 1;
if(ql > mid) return QuerySum(rs, ql, qr);
else if(qr <= mid) return QuerySum(ls, ql, qr);
else return QuerySum(ls, ql, qr) + QuerySum(rs, ql, qr);
}
ull QuerySum2(int k, int ql, int qr) {
if(ql <= T[k].l && T[k].r <= qr) return T[k].s2;
int mid = T[k].l + T[k].r >> 1;
if(ql > mid) return QuerySum2(rs, ql, qr);
else if(qr <= mid) return QuerySum2(ls, ql, qr);
else return QuerySum2(ls, ql, qr) + QuerySum2(rs, ql, qr);
}
signed main() {
N = read(); M = read();
Build(1, 1, N);
int GG = 0;
while(M--) {
int opt = read();
if(opt == 1) {
int x = read() ^ GG, y = read() ^ GG;
Modify(1, x, y);
} else {
int l = read() ^ GG, r = read() ^ GG; ull k = read() ^ GG;
ull n = r - l + 1, mn = QueryMn(1, l, r), mx = QueryMx(1, l, r);
ull s = QuerySum(1, l, r), s2 = QuerySum2(1, l, r), ns = mn * n + n * (n - 1) * k / 2;
ull gg = (6 * mn * mn * n) + (6 * mn * k * n * (n - 1)) + (k * k * (n - 1) * n * (2 * (n - 1) + 1)),
gg2 = 6 * s2;
if((mx - mn == (r - l) * k) &&
(mn * n + n * (n - 1) / 2 * k == s) &&
(gg == gg2)) puts("Yes"), GG++;
else puts("No");
}
}
return 0;
}
/*
5 3
1 3 2 5 6
2 2 2 23333
1 5 4
2 1 5 1
*/

BZOJ4373: 算术天才⑨与等差数列(线段树 hash?)的更多相关文章

  1. [BZOJ4373]算术天才⑨与等差数列(线段树)

    [l,r]中所有数排序后能构成公差为k的等差数列,当且仅当: 1.区间中最大数-最小数=k*(r-l) 2.k能整除区间中任意两个相邻数之差,即k | gcd(a[l+1]-a[l],a[l+2]-a ...

  2. bzoj4373 算术天才⑨与等差数列——线段树+set

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4373 一个区间有以 k 为公差的数列,有3个条件: 1.区间 mx - mn = (r-l) ...

  3. 【BZOJ4373】算术天才⑨与等差数列 线段树+set

    [BZOJ4373]算术天才⑨与等差数列 Description 算术天才⑨非常喜欢和等差数列玩耍.有一天,他给了你一个长度为n的序列,其中第i个数为a[i].他想考考你,每次他会给出询问l,r,k, ...

  4. 【BZOJ4373】算术天才⑨与等差数列 [线段树]

    算术天才⑨与等差数列 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 算术天才⑨非常喜欢和等 ...

  5. BZOJ 4373 算术天才⑨与等差数列 线段树+set(恶心死我了)

    mdzz,这道题重构了4遍,花了一个晚上... 满足等差数列的条件: 1. 假设min是区间最小值,max是区间最大值,那么 max-min+k(r−l) 2. 区间相邻两个数之差的绝对值的gcd=k ...

  6. BZOJ 4373算术天才⑨与等差数列(线段树)

    题意:给你一个长度为n的序列,有m个操作,写一个程序支持以下两个操作: 1. 修改一个值 2. 给出三个数l,r,k, 询问:如果把区间[l,r]的数从小到大排序,能否形成公差为k的等差数列. n,m ...

  7. BZOJ 4373: 算术天才⑨与等差数列 线段树

    Description 算术天才⑨非常喜欢和等差数列玩耍. 有一天,他给了你一个长度为n的序列,其中第i个数为a[i]. 他想考考你,每次他会给出询问l,r,k,问区间[l,r]内的数从小到大排序后能 ...

  8. bzoj 4373 算术天才⑨与等差数列——线段树+set

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4373 能形成公差为k的等差数列的条件:mx-mn=k*(r-l) && 差分 ...

  9. BZOJ4373 算术天才⑨与等差数列 【线段树】*

    BZOJ4373 算术天才⑨与等差数列 Description 算术天才⑨非常喜欢和等差数列玩耍. 有一天,他给了你一个长度为n的序列,其中第i个数为a[i]. 他想考考你,每次他会给出询问l,r,k ...

随机推荐

  1. tkinter如何设置界面消失 当制作一个登陆界面时,登陆成功之后,如何让登陆界面本身消失

    tkinter如何设置界面消失 当制作一个登陆界面时,登陆成功之后,如何让登陆界面本身消失 if querySQL.checkAll():#用户名和密码都输入正确 self.root.withdraw ...

  2. 1. git基础

    1. 安装git sudo apt-get install git 2. 注册 git config --global user.name "Your Name" git conf ...

  3. Vue2.5开发去哪儿网App 第三章笔记 下

    1.样式的绑定 我们可以传给 v-bind:class 一个对象,以动态地切换 class   例如: :class="{activated:isactivated}" 上面的语法 ...

  4. 解决应用商店错误代码0x80072efd、0x80131505的方法

    解决应用商店错误代码0x80072efd.0x80131505的方法 使用win10系统的朋友应该都会经常使用应用商店这个程序吧?它是微软自带的软件下载程序!不过最近有位win10的朋友告诉小编,他的 ...

  5. Xamarin Forms MVVM实现效果说明

    实体对象定义Model2  和Model均可 实现响应效果 public class BaseModel : INotifyPropertyChanged { private bool _select ...

  6. (转) 面向对象设计原则(二):开放-封闭原则(OCP)

    原文:https://blog.csdn.net/tjiyu/article/details/57079927 面向对象设计原则(二):开放-封闭原则(OCP) 开放-封闭原则(Open-closed ...

  7. koa-router post请求接收的参数为空

    注:koa-router路由和koa-bodyparser中间件  post请求中参数为空. 页面代码 <!DOCTYPE html> <html> <head> ...

  8. JAVA+SELENIUM+MAVEN+TESTNG框架(二)新建项目

    1.新建maven项目 2.下载selenium的jar包,放入maven依赖库中 3.新增testng依赖库,build path->add libirary->testng 4.查看自 ...

  9. 交换排序:冒泡排序vs快速排序

    在开发的过程中, 经常会遇到集合排序, 那么一般情况下, 我们都是使用list.OrderBy()的方式来排序, 也无需关注到里面算法的实现是个什么样子. 正好这几天准备回顾一下数据结构与算法. 首先 ...

  10. 【详解】ThreadPoolExecutor源码阅读(二)

    系列目录 [详解]ThreadPoolExecutor源码阅读(一) [详解]ThreadPoolExecutor源码阅读(二) [详解]ThreadPoolExecutor源码阅读(三) AQS在W ...