如果能够知道不大于n的合法数有多少个,显然就可以二分答案了。

  考虑怎么求这个。容易想到容斥,即枚举完全平方数。我们知道莫比乌斯函数就是此种容斥系数。筛出来就可以了。

  注意二分时会爆int。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 100010
#define inf 2000000000
int T,n,prime[N],mobius[N],cnt=;
bool flag[N];
int calc(int n)
{
int s=n;
for (int i=;i*i<=n;i++)
s+=mobius[i]*(n/(i*i));
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2440.in","r",stdin);
freopen("bzoj2440.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
flag[]=;mobius[]=;
for (int i=;i<=N-;i++)
{
if (!flag[i]) prime[++cnt]=i,mobius[i]=-;
for (int j=;j<=cnt&&prime[j]*i<=N-;j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==) break;
mobius[prime[j]*i]=-mobius[i];
}
}
T=read();
while (T--)
{
n=read();
unsigned int l=,r=inf;int ans;
while (l<=r)
{
int mid=l+r>>;
if (calc(mid)>=n) ans=mid,r=mid-;
else l=mid+;
}
cout<<ans<<endl;
}
return ;
}

BZOJ2440 中山市选2011完全平方数(容斥原理+莫比乌斯函数)的更多相关文章

  1. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  2. BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4805  Solved: 2325[Submit][Sta ...

  3. bzoj 2440: [中山市选2011]完全平方数【莫比乌斯函数+二分】

    二分答案,然后用莫比乌斯函数作为容斥系数,计算当前枚举的mid内有几个满足要求的数 #include<iostream> #include<cstdio> #include&l ...

  4. BZOJ2440: [中山市选2011]完全平方数 容斥原理_莫比乌斯函数

    emmm....... 数学题都不友好QAQ...... Code: #include <cstdio> #include <algorithm> #include <c ...

  5. BZOJ2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4920  Solved: 2389[Submit][Sta ...

  6. 2019.02.09 bzoj2440: [中山市选2011]完全平方数(二分答案+容斥原理)

    传送门 题意简述:qqq次询问(q≤500)(q\le500)(q≤500),每次问第kkk个不被除111以外的完全平方数整除的数是多少(k≤1e9)(k\le1e9)(k≤1e9). 思路:考虑二分 ...

  7. 【BZOJ】2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理+二分)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2440 我觉得网上很多题解都没说清楚...(还是我太弱了? 首先我们可以将问题转换为判定性问题,即给出 ...

  8. BZOJ2440 [中山市选2011]完全平方数

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  9. 【学术篇】bzoj2440 [中山市选2011]完全平方数

    -题目の传送门- 题目大意: 找到第k个无平方因子数. 看到数据范围很大, 我们要采用比\(O(n)\)还要小的做法. 考虑如果前\(x\)个数中有\(k-1\)个无平方因子数, 而前\(x+1\)个 ...

随机推荐

  1. Splay 平衡树

    摘自大佬文章 https://www.luogu.org/blog/user19027/solution-p3369 维护一个数据结构1.插入 x 数2.删除 x 数(若有多个相同的数,因只删除一个) ...

  2. HDU3853:LOOPS

    题意:迷宫是一个R*C的布局,每个格子中给出停留在原地,往右走一个,往下走一格的概率,起点在(1,1),终点在(R,C),每走一格消耗两点能量,求出最后所需要的能量期望   #include<i ...

  3. java中线程的几种状态和停止线程的方法

    1.线程的状态图 需要注意的是:线程调用start方法是使得线程到达就绪状态而不是运行状态 2.停止线程的两种方法 1)自然停止:线程体自然执行完毕 2)外部干涉:通过线程体标识 1.线程类中定义线程 ...

  4. 七,ESP8266-UDP(基于Lua脚本语言)

    https://www.cnblogs.com/yangfengwu/p/7533302.html 那天朋友问我为什么有UDP Sever 和 UDP Client   ,,我说:每个人想的不一样,设 ...

  5. Vim2.1-Vim简明教程【CoolShell】【非原创】

    vim的学习曲线相当的大(参看各种文本编辑器的学习曲线),所以,如果你一开始看到的是一大堆VIM的命令分类,你一定会对这个编辑器失去兴趣的.下面的文章翻译自<Learn Vim Progress ...

  6. 带你看懂大数据采集引擎之Flume&采集目录中的日志

    一.Flume的介绍: Flume由Cloudera公司开发,是一种提供高可用.高可靠.分布式海量日志采集.聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于采集数据:同时,flum ...

  7. mysql图形化界面MySQL_Workbench

    1,下载最新版本的MySQL Workbench,下载地址: http://www.mysql.com/downloads/workbench/   2,安装Workbench的依赖组件两个 http ...

  8. 20155232《网络对抗》Exp5 MSF基础应用

    20155232<网络对抗>Exp5 MSF基础应用 基础问题回答 用自己的话解释什么是exploit,payload,encode. exploit:就是利用可能存在的漏洞对目标进行攻击 ...

  9. ssh无法登录,提示Connection closing...Socket close.

    一.问题无法ssh直接连接到服务器 [C:\~]$ ssh 192.168.7.77 Connecting to ... Connection established. To escape to lo ...

  10. [CF1019C]Sergey's problem[构造]

    题意 找出一个集合 \(Q\),使得其中的点两两之间没有连边,且集合中的点可以走不超过两步到达其他所有不在集合中的点.输出任意一组解. \(n\leq 10^6\) 分析 考虑构造,先从 \(1\) ...