题目链接

\(Description\)

求最多10个串的LCS(最长公共子序列)。

\(Solution\)

类比上题,对一个串建SAM,我们可以逐串地求出其在每个节点所能匹配的最大长度mx[i]。

对于每个点i,所有串的mx[i]的最小值即为在点i n个串的LCS长度。枚举所有点即可。

这需要把每个点都匹配一遍求mx[]。因为fa[p]是p的上一个后缀,所有(部分)匹配了p一定可以完全匹配fa[p],而匹配p时不会沿p到根去更新一遍mx[]。

所以每匹配一个串,要按len从大到小(自叶子向根)更新一遍,即如果p(有部分)匹配了,那么mx[fa[p]]就可以更新为len[fa[p]].

//0.08s	27M
#include <cstdio>
#include <cstring>
#include <algorithm>
const int N=2e5+7; char s[N>>1];
struct Suffix_Automaton
{
int las,tot,fa[N],son[N][26],len[N],mx[N],ans[N],tm[N],A[N];
void Insert(int c)
{
int p=las,np=++tot; len[las=np]=ans[np]=len[p]+1;
for(; p&&!son[p][c]; p=fa[p]) son[p][c]=np;
if(!p) fa[np]=1;
else
{
int q=son[p][c];
if(len[q]==len[p]+1) fa[np]=q;
else
{
int nq=++tot; ans[nq]=len[nq]=len[p]+1;
memcpy(son[nq],son[q],sizeof son[q]);
fa[nq]=fa[q], fa[q]=fa[np]=nq;
for(; son[p][c]==q; p=fa[p]) son[p][c]=nq;
}
}
}
void Build(char *s)
{
las=tot=1; int l=strlen(s);
for(int i=0; i<l; ++i) Insert(s[i]-'a');
for(int i=1; i<=tot; ++i) ++tm[len[i]];
for(int i=1; i<=l; ++i) tm[i]+=tm[i-1];
for(int i=1; i<=tot; ++i) A[tm[len[i]]--]=i;
}
void Match(char *s)
{
memset(mx,0,sizeof mx);
for(int now=0,p=1,c,i=0,l=strlen(s); i<l; ++i,mx[p]=std::max(mx[p],now))
if(son[p][c=s[i]-'a']) p=son[p][c], ++now;
else
{
for(; p&&!son[p][c]; p=fa[p]);
if(!p) p=1, now=0;
else now=len[p]+1, p=son[p][c];
}
for(int x,i=tot; i; --i)
if(mx[x=A[i]]&&fa[x]) mx[fa[x]]=len[fa[x]];
for(int i=1; i<=tot; ++i) ans[i]=std::min(ans[i],mx[i]);
}
void Query()
{
int res=0;
for(int i=1; i<=tot; ++i) res=std::max(res,ans[i]);
printf("%d",res);
}
}sam; int main()
{
scanf("%s",s), sam.Build(s);
while(~scanf("%s",s)) sam.Match(s);
sam.Query();
return 0;
}

SPOJ.1812.LCS2(后缀自动机)的更多相关文章

  1. SPOJ 1812 LCS2 [后缀自动机 DP]

    题意: 求多个串<=10的最长连续子串 一个串建SAM,然后其他串在上面走 每个状态记录所有串在这个状态的公共子串的最小值 一个串在上面走的时候记录与每个状态公共子串的最大值,注意出现次数向父亲 ...

  2. spoj 1812 lcsII (后缀自动机)

    spoj 1812 lcsII (后缀自动机) 题意:求多个串的lcs,最多10个串,每个串最长10w 解题思路:后缀自动机.先建好第一个串的sam,然后后面的串拿上去跑(这个过程同前一题).sam上 ...

  3. spoj 1812 LCS2 - Longest Common Substring II (后缀自己主动机)

    spoj 1812 LCS2 - Longest Common Substring II 题意: 给出最多n个字符串A[1], ..., A[n], 求这n个字符串的最长公共子串. 限制: 1 < ...

  4. SPOJ 1812 LCS2 - Longest Common Substring II (后缀自动机、状压DP)

    手动博客搬家: 本文发表于20181217 23:54:35, 原地址https://blog.csdn.net/suncongbo/article/details/85058680 人生第一道后缀自 ...

  5. 多个串的最长公共子串 SPOJ - LCS2 后缀自动机

    题意: 求多个串的最长公共子串 这里用的是O(n)的后缀自动机写法 我后缀数组的专题有nlog(n)写法的 题解: 对于其中的一个串建立后缀自动机 然后对于后缀自动机上面的每一个节点求出每一个节点最长 ...

  6. POJ.2774.Long Long Message/SPOJ.1811.LCS(后缀自动机)

    题目链接 POJ2774 SPOJ1811 LCS - Longest Common Substring 确实比后缀数组快多了(废话→_→). \(Description\) 求两个字符串最长公共子串 ...

  7. SPOJ NSUBSTR Substrings 后缀自动机

    人生第一道后缀自动机,总是值得纪念的嘛.. 后缀自动机学了很久很久,先是看CJL的论文,看懂了很多概念,关于right集,关于pre,关于自动机的术语,关于为什么它是线性的结点,线性的连边.许多铺垫的 ...

  8. SPOJ 1812 LCS2 - Longest Common Substring II

    思路 后缀自动机求多串的最长公共子串 对第一个建出后缀自动机,其他的在SAM上匹配,更新到一个节点的匹配长度最大值即可,最后对所有最大值取min得到一个节点的答案,对所有节点答案求max即可 然后注意 ...

  9. 2018.12.15 spoj Substrings(后缀自动机)

    传送门 后缀自动机基础题. 求长度为iii的子串出现次数的最大值. 对原串建出samsamsam,然后用sizsizsiz更新每个maxlenmaxlenmaxlen的答案. 然后由于后缀链接将其转化 ...

随机推荐

  1. Firefox滚动残影(转)

    Firefox滚动残影   Firefox滚动残影这文章放在草稿箱有一阵子了,之前的3系列都有这BUG,当正想发表这文章的时候,和我沟通刚刚升级的FF4已修复此BUG,所以搁置一阵在考虑到这文章还有没 ...

  2. Algorithm(1) - Karatsuba multiplication

    这个系列主要是记一下目前效率较高或者比较出名的一些算法. Karatsuba multiplication: x=5678   then: a=56  b=67 y=1234           c= ...

  3. HDU 1867 A + B for you again 字符匹配

    解题报告:给你两个字符串,让你连接起来,没有前后顺序,要求是长度最短优先,其次是字典序最小.这题我用的是KMP,做两次匹配,分别把第一次跟第二次输入的字符串放前面,然后比较两次得到的字符窜的长度和字典 ...

  4. 如何让你的.vue在sublime text 3 中变成彩色?

    作者:青鲤链接:https://www.zhihu.com/question/52215834/answer/129495890来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明 ...

  5. CSS background汇总

    本文更新版本 ,请跳转 所有背景属性都不能继承. 1.    background-color 所有元素都能设置背景颜色. background-color的默认值是transparent:也就是说, ...

  6. Hibernate的实体规则、主键生成策略、对象状态

    一. hibernate的实体类有一定的规则,类似于mybatis的逆向工程导出的实体类.具体的规则以及原因如下: 1.持久化类需要提供无参的构造方法. 因为hibernate底层采用反射机制创建对象 ...

  7. Android启动过程

    1.背景知识                                                          Init进程是Linux环境下非常重要的一个进程,而Zygote进程是J ...

  8. Linux下select&poll&epoll的实现原理(一)【转】

    转自:http://www.cnblogs.com/lanyuliuyun/p/5011526.html 最近简单看了一把 linux-3.10.25 kernel中select/poll/epoll ...

  9. linux内存管理-内核用户空间 【转】

    转自:http://blog.chinaunix.net/uid-25909619-id-4491362.html 1,linux内存管理中几个重要的结构体和数组 page unsigned long ...

  10. HTML播放FLASH(SWF)神器-SWFObject

    环境 必须有 swfobject.js和 expressInstall.swf js:  http://pan.baidu.com/share/link?shareid=2536087943& ...