BZOJ.1017.[JSOI2008]魔兽地图(树形DP 背包DP)
树形DP,考虑子节点对父节点的贡献。
设f[x][i][j]表示当前为x,用i个x去合成上一层装备,花费为j的最大价值。
由子节点转移时 是一个分组背包,需要一个辅助数组g[i][j]表示前i棵子树花费为j能贡献给x的最大价值。
那么 \(g[i][j] = max{g[i-1][j-k]+f[v][l*need[x]][k]}\)。\(need[x]\)为x需要子节点v的个数,\(l\)为合成x的个数,这个同样需要枚举。
那么对于每个\(l\),可以枚举用多少个x合成上一层,更新f,即 \(f[x][i][j] = max{g[all][j]+val[x]*(l-i)}\)。(\(g\)已经是要求合成\(l\)个x的价值)
处理完一棵子树,就可以简单地背包一下最大价值了。。
g[][]确实可以用一维,但是就不能进一步优化了,而且避免不了每次memset。(优化相当明显)
费用流显然做不了嘛。。
优化后:43108kb 1100ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
const int N=53,M=2002,INF=0x3f3f3f3f;
int n,m,Enum,H[N],nxt[N],to[N],need[N],dgr[N],val[N],cost[N],num[N],Ans[M],f[N][101][M],g[N][M];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AddEdge(int u,int v,int w){
++dgr[v], to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, need[Enum]=w;
}
void dfs(int x)
{
if(!H[x]){
num[x]=std::min(num[x],m/cost[x]);
for(int i=0; i<=num[x]; ++i)
for(int j=i; j<=num[x]; ++j)//限制不是 j*cost[x]<=m。。还有num[]限制。
f[x][i][j*cost[x]]=(j-i)*val[x];
return;
}
num[x]=100;
for(int i=H[x]; i; i=nxt[i])
dfs(to[i]), num[x]=std::min(num[x],num[to[i]]/need[i]), cost[x]+=need[i]*cost[to[i]];
num[x]=std::min(num[x],m/cost[x]);
memset(g,-0x3f,sizeof g);
g[0][0]=0;
for(int now,l=num[x]; ~l; --l)//当前要合成l个
{
now=0;
for(int i=H[x],v=to[i],w=l*need[i]; i; i=nxt[i],v=to[i],w=l*need[i],++now)
for(int j=0; j<=m; ++j)
if(g[now][j]>=0)//这个优化很有效
for(int k=0; k+j<=m; ++k)//g[0][..]不会被更新了,每次一定是由之前合法的转移来
g[now+1][j+k]=std::max(g[now+1][j+k],g[now][j]+f[v][w][k]);
for(int i=0; i<=l; ++i)
for(int j=0; j<=m; ++j)
f[x][i][j]=std::max(f[x][i][j],g[now][j]+(l-i)*val[x]);//不需要再枚举k用g[k]更新f[j-k],f只是由g[]转移来,且只能从当前g[]转移。
}
}
int main()
{
n=read(),m=read();
char s[3];
for(int x,v,i=1; i<=n; ++i)
{
val[i]=read(), scanf("%s",s);
if(s[0]=='A'){
x=read();
while(x--) v=read(),AddEdge(i,v,read());
}
else cost[i]=read(),num[i]=read();
}
memset(f,-0x3f,sizeof f);//会有非法状态。
for(int i=1; i<=n; ++i)
if(!dgr[i])
{
dfs(i);
for(int j=m; j; --j)
for(int k=1; k<=j; ++k)
Ans[j]=std::max(Ans[j],Ans[j-k]+f[i][0][k]);//根节点从f[i][0]转移就好了。
}
printf("%d",Ans[m]);
return 0;
}
优化前:42700kb 6968ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
const int N=53,M=2002,INF=0x3f3f3f3f;
int n,m,Enum,H[N],nxt[N],to[N],need[N],dgr[N],val[N],cost[N],num[N],Ans[M],f[N][101][M],g[M];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AddEdge(int u,int v,int w){
++dgr[v], to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, need[Enum]=w;
}
void dfs(int x)
{
if(!H[x]){
num[x]=std::min(num[x],m/cost[x]);
for(int i=0; i<=num[x]; ++i)
for(int j=i; j<=num[x]; ++j)//限制不是 j*cost[x]<=m。。还有num[]限制。
f[x][i][j*cost[x]]=(j-i)*val[x];
return;
}
num[x]=100;
for(int i=H[x]; i; i=nxt[i])
dfs(to[i]), num[x]=std::min(num[x],num[to[i]]/need[i]), cost[x]+=need[i]*cost[to[i]];
num[x]=std::min(num[x],m/cost[x]);
for(int l=num[x]; ~l; --l)//当前要合成l个
{//g[]不需要再清空了吧,数量递减g[]一定是递增的。当然这么写本来也不需要。
memset(g,-0x3f,sizeof g);//然而必须要清空。。之后的g[j]可能被之前本应非法-INF的g[j-k]给更新了。。
g[0]=0;//necessary
for(int i=H[x]; i; i=nxt[i])
for(int j=m; ~j; --j)//这要更新到0!(DP g[]的初始值)
{
int tmp=-INF;
for(int k=0; k<=j; ++k)
tmp=std::max(tmp,g[j-k]+f[to[i]][l*need[i]][k]);
g[j]=tmp;
}
for(int i=0; i<=l; ++i)
for(int j=0; j<=m; ++j)
f[x][i][j]=std::max(f[x][i][j],g[j]+(l-i)*val[x]);//不需要再枚举k用g[k]更新f[j-k],f只是由g[]转移来,且只能从当前g[]转移。
}
}
int main()
{
n=read(),m=read();
char s[3];
for(int x,v,i=1; i<=n; ++i)
{
val[i]=read(), scanf("%s",s);
if(s[0]=='A'){
x=read();
while(x--) v=read(),AddEdge(i,v,read());
}
else cost[i]=read(),num[i]=read();
}
memset(f,-0x3f,sizeof f);//会有非法状态。
for(int i=1; i<=n; ++i)
if(!dgr[i])
{
dfs(i);
for(int j=m; j; --j)
for(int k=1; k<=j; ++k)
Ans[j]=std::max(Ans[j],Ans[j-k]+f[i][0][k]);//根节点从f[i][0]转移就好了。
}
printf("%d",Ans[m]);
return 0;
}
BZOJ.1017.[JSOI2008]魔兽地图(树形DP 背包DP)的更多相关文章
- bzoj 1017: [JSOI2008]魔兽地图DotR【树形dp+背包】
bzoj上是一个森林啊--? dp还是太弱了 设f[i][j][k]为到点i,合成j个i并且花费k金币能获得的最大力量值,a[i]为数量上限,b[i]为价格,p[i]为装备力量值 其实这个状态设计出来 ...
- bzoj 1017 : [JSOI2008]魔兽地图DotR
比较难想的的一道树形dp. 看到这道题正常的思路应该是$f[i][j][k]$表示i这棵子树里买了j个i物品花费为k的最大收益. 但如果直接这么定义的话转移复杂度会很高,需要枚举j,枚举孩子,枚举k, ...
- 1017: [JSOI2008]魔兽地图DotR - BZOJ
Description DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the Anc ...
- [JSOI2008]魔兽地图(树形dp)
DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the Ancients) Allst ...
- [luogu4037 JSOI2008] 魔兽地图 (树形dp)
传送门 Description DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the ...
- [BZOJ1017][JSOI2008]魔兽地图DotR 树形dp
1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 2597 Solved: 1010[Submit][ ...
- BZOJ [JSOI2008]魔兽地图DotR
1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 1243 Solved: 532[Submit][S ...
- 【bzoj1017】[JSOI2008]魔兽地图DotR
1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 1658 Solved: 755[Submit][S ...
- 【BZOJ1017】[JSOI2008]魔兽地图(动态规划)
[BZOJ1017][JSOI2008]魔兽地图(动态规划) 题面 BZOJ 洛谷 题解 状态设一下,\(f[i][j][k]\)表示第\(i\)个物品,有\(j\)个用于合成,总花费为\(k\)的最 ...
随机推荐
- Python内置模块-日志模块(logging)常见用法
Python内置模块-日志模块(logging)常见用法 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.初识logging模块 #!/usr/bin/env python #_ ...
- Python基础【day01】:PyChram使用技巧总结(六)
本节内容 1.添加或者修改文件模板 2. python版本管理切换 3.已有文件重命名4.Python模块安装5.在PyChram中直接浏览文件目录6. 断点调试7.常用快捷键8.PyChram设置字 ...
- 纯CSS实现表单验证
ladies and 乡亲们,表单验证你在做吗?客户端or服务器端,javascript or jquery,动手写 or 使用插件,今天我们来探索下使用纯css实现表单验证,借以学习css sele ...
- 原生JavaScript技巧大收集(1~10)
1.原生JavaScript实现字符串长度截取 01 function cutstr(str, len) { 02 var temp; 03 var icount = 0; 04 ...
- php银行卡校验
前言银行金卡,维萨和万事达.银联品牌,如果是贷记卡或准贷记卡,一定为16位卡号.而借记卡可以16-19位不等.美国运通卡则不论金卡或是白金卡.普通卡,都是15位卡号.16-19 位卡号校验位采用 Lu ...
- CS229 笔记02
CS229 笔记02 公式推导 $ {\text {For simplicity, Let }} A, B, C \in {\Bbb {R}}^{n \times n}. $ $ {\bf {\t ...
- 关于webpack下热更新?&自动刷新?的小记(非vue-cli)
写本随笔时:webpack4.6.0 为何标题用?号,因为老衲也不知是否用词正确,大概是这样的说法: webpack4.0引入生产模式和开发模式,在开发时使用 webpack 打包后不压缩,所以只需要 ...
- CentOS安装SVN客户端
1.检查系统是否已经安装如果安装就卸载 rpm -qa subversion yum remove subversion 2.安装 yum install subversion 3.建立SVN库 mk ...
- CentOS7上安装与配置Tomcat8与MySQL5.7
一.安装tomcat Tomcat 的安装依赖 JDK,在安装 Tomcat 之前需要先安装 Java JDK.输入命令 java -version,如果显示 JDK 版本,证明已经安装了 JDK.
- Android 6.0 API
Android 6.0 (M) 为用户和应用开发者提供了新功能.本文旨在介绍其中最值得关注的 API. 着手开发 要着手开发 Android 6.0 应用,您必须先获得 Android SDK,然后使 ...